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Abstract: The C-C motif chemokine receptor 8 (CCRS8) is highly and selectively expressed in
regulatory T (Treg) cells and is associated with tumor progression. The massive accumulation of
Treg cells into tumors suppresses the effector function of CD8* cells against tumor cells. Therefore,
selective depletion of Treg cells using anti-CCR8 monoclonal antibodies (mAbs) reinvigorates
antitumor immune responses and improves responses to cancer immunotherapy. Previously, we
developed an anti-mouse CCR8 (mCCR8) mAb, CsMab-2, using the Cell-Based Immunization and
Screening (CBIS) method. In this study, the binding epitope of CsMab-2 was investigated using flow
cytometry. The mCCRS8 extracellular domain-substituted mutant analysis showed that CsMab-2
recognizes the N-terminal region (1-33 amino acids) of mCCR8. Next, 1xalanine (or glycine)
scanning and 2xalanine (or glycine) scanning were conducted in the N-terminal region. The results
revealed that the 17DFFTAP-22 sequence is important for the recognition by CsMab-2, and Thr20 is a
central amino acid of the epitope. These results revealed the involvement of the N-terminus of
mCCRS8 in the recognition by CsMab-2.
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1. Introduction

The C-C motif chemokine receptor 8 (CCR8) is a member of G protein-coupled receptors
(GPCRs) family. The C-C motif chemokine ligands (CCLs), including CCL1, CCL8, CCL16, and
CCL18 are known as ligands for human CCRS8. CCL1 is the only ligand for CCRS,[1] which is
produced by CD11b*CD14* myeloid cells during the infiltration of regulatory T (Treg) cells into
tumor.[2] Upon binding of CCL1 to CCRS, the FOXP3 is upregulated by the STAT3 pathway, and the
activated CCR8* Treg cells potently suppress antitumor immunity through secretion of granzyme B
and IL-10.[3] Increased expression of CCRS8 is observed in Treg cells, especially in cancer patients.[4]
Patients with high levels of Treg cells exhibit poor prognoses and clinical outcomes in several
cancers.[5] Therefore, it has been proposed that depletion of tumor-infiltrated Treg cells could restore
antitumor immunity and improve responses to tumor immunotherapy.[6] Recent preclinical mouse
models have revealed that depletion of Treg cells using an anti-mouse CCR8 (mCCR8) monoclonal
antibody (mAb) exhibited strong antitumor responses through dramatic changes of the intratumor
CD8* T cell profile[7] or enhanced the antitumor effects of anti-programmed cell death 1 (PD-1)
therapy.[8]

The understanding of the structural-based CCR activation is important for the development of
therapeutic agents. Among the CCR family members, CCR2 and CCR5 have been structurally solved
in both inactive and active states,[9-12] while inactive-state of CCR7 and CCR9, and active-state of
CCR1 and CCR6 structures are also characterized.[13-16] Furthermore, the structures of CCR8 in
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complex with either the antagonistic mAb or the endogenous ligand CCL1 were determined, which
provides the specific activation mechanism by CCL1 and inhibition by mAb.[17]

We have developed anti-mouse GPCR mAbs against CCR1 (clone CiMab-6),[18] CCR3 (clones
CsMab-2, CsMab-3, and CsMab-4),[19-21] CCRS8 (clones CsMab-1, CsMab-2, and CsMab-3),[22-24]
CXCR1 (clone CxiMab-1),[25] CXCR3 (clone CxsMab-4),[26] and CXCR4 (clone CxsMab-1)[27] using
the Cell-Based Immunization and Screening (CBIS) method. For the determination of the epitopes,
we have faced difficulty using conventional methods such as enzyme-linked immunosorbent assay.
In this study, epitope mapping of the an anti-mCCR8 mAb was conducted by flow cytometry-based
approaches.

2. Materials and Methods

2.1. Plasmid construction and cell lines

Chimeric mutants including mCCR3 (mCCR8p1-33), mCCR3 (mCCR8p92-105), mCCR3
(mCCR8p170-200), and mCCR3 (mCCR8p262-278) and alanine (or glycine) substituted mutants in
the mCCR8 N-terminal region were produced with a PA16 tag at their N-terminus. Stable
transfectants of Chinese hamster ovary (CHO)-K1 and CHO/mCCRS cells were established in our
previous study.[24] The chimeric and the point mutant plasmids were transfected into CHO-K1 cells.
Stable transfectants were selected using a cell sorter (SH800; Sony Corp., Tokyo, Japan).

2.2. Antibodies

CsMab-2 was established by the CBIS method.[23] NZ-1 (an anti-PA16 tag mAb) was described
previously.[28] A secondary Alexa Fluor 488-conjugated anti-rat IgG was purchased from Cell
Signaling Technology, Inc. (Danvers, MA, USA).

2.3. Flow cytometry

Cells were treated with CsMab-2 (10 pg/mL) or NZ-1 (1 pg/mL) for 30 min at 4°C and
subsequently with Alexa Fluor 488-conjugated anti-rat IgG (1:2000; Cell Signaling Technology, Inc.).
Fluorescence data were obtained using the SA3800 Cell Analyzer (Sony Corp.).

3. Results

3.1. Determination of the epitope of an anti-mCCR8 mAb by flow cytometry using chimeric proteins

CsMab-2 is applicable for flow cytometry and immunocytochemistry.[23] To investigate the
binding epitope of CsMab-2, we focused on four extracellular regions of mCCRS, including the N-
terminal region [1-33 amino acids (aa)], extracellular loop 1 (ECL1; 92-105 aa), ECL2 (170-200 aa),
and ECL3 (262-278 aa). The four extracellular regions of mCCR8 were substituted into the
corresponding regions of mCCR3, which possesses a similar structure to mCCRS8. As shown in Figure
1, mCCR3 (mCCR8p1-33), mCCR3 (mCCR8p92-105), mCCR3 (mCCR8p170-200), and mCCR3
(mCCR8p262-278) were generated. The chimeric proteins were transiently expressed on CHO-K1
cells, and the reactivities to CsMab-2 were analyzed using flow cytometry (Figure 2A). CsMab-2
reacted with mCCR3 (mCCR8p1-33) and CHO/mCCRS cells, but not with other chimeric proteins
(Figure 2A). The cell surface expression of each mutant was confirmed by an anti-PA16 tag mAb, NZ-
1 (Figure 2B). These results indicated that the N-terminal region of mCCRS is recognized by CsMab-
2.
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Figure 1. Schematic illustration of chimeric proteins. The four extracellular regions of mCCRS,
including the N-terminal region (1-33 aa), ECL1 (92-105 aa), ECL2 (170-200 aa), and ECL3 (262-278
aa) were substituted into the corresponding regions of mCCR3. ECL, extracellular loop.
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Figure 2. Determination of the epitope of an anti-mCCR8 mAb by flow cytometry using chimeric
proteins. CsMab-2 (10 pg/mL) (A) and an anti-PA16 tag mAb, NZ-1 (1 ug/mL) (B) were treated with
CHO-K1 cells which were transiently expressed the chimeric proteins, CHO/mCCRS, or CHO-K1 cells
for 30 min at 4°C, followed by the addition of Alexa Fluor 488-conjugated anti-rat IgG. Red lines show
the cells with CsMab-2 or NZ-1 treatment, and black lines show cells treated with a blocking buffer as

a negative control.
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3.2. Determination of the CsMab-2 epitope by flow cytometry using 1xalanine scanning

Thirty-two 1xalanine (or glycine) substitution mutants of mCCR8 were constructed, and the
mutant proteins were stably expressed on CHO-K1 cells. The reactivity against CsMab-2 was assessed
using flow cytometry. As shown in Figure 3A, CsMab-2 did not react with a mutant (T20A). In
contrast, CsMab-2 reacted with the other 31 mutants. The cell surface expression of each mutant was
confirmed by NZ-1 (Figure 3B). These results showed that Thr20 of mCCR8 is important for CsMab-

2 binding.
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Figure 3. Determination of the CsMab-2 epitope by flow cytometry using Ixalanine scanning.
CsMab-2 (10 pg/mL) (A) and NZ-1 (1 pg/mL) (B) were treated with CHO-K1 cells which were stably
expressed mutant proteins or CHO-K1 cells for 30 min at 4°C, followed by the addition of Alexa Fluor
488-conjugated anti-rat IgG. Red lines show the cells with CsMab-2 or NZ-1 treatment, and black lines
show cells treated with a blocking buffer as a negative control.

3.3. Determination of the CsMab-2 epitope by flow cytometry using 2xalanine scanning

We also examined the reactivity of CsMab-2 against 2xalanine (or glycine)-substituted mCCRS.
We constructed thirty 2xalanine (or glycine)-substituted mutants in the N-terminal region of mCCRS8
except for Cys23. The reactivity against CsMab-2 was assessed using flow cytometry. As shown in
Figure 4A, CsMab-2 did not react with the four mutants (D17A-F18A, F19A-T20A, T20A-A21G, and
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A21G-P22A). In contrast, CsMab-2 reacted with the other 26 mutants. The cell surface expression of
each mutant was confirmed by NZ-1 (Figure 4B). These results showed that a motif from Asp17 to
Pro22 in mCCR8 is important for CsMab-2 recognition.
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Figure 4. Determination of the CsMab-2 epitope by flow cytometry using 2xalanine scanning.
CsMab-2 (10 pg/mL) (A) and NZ-1 (1 ug/mL) (B) were treated with CHO-K1 cells which were
transiently expressed mutant proteins or CHO-K1 cells for 30 min at 4°C, followed by the addition of
Alexa Fluor 488-conjugated anti-rat IgG. Red lines show the cells with CsMab-2 or NZ-1 treatment,
and black lines show cells treated with a blocking buffer as a negative control.

4. Discussion

In this study, we performed the flow cytometry-based epitope mapping of an anti-mouse CCR8
mAb (CsMab-2) using the chimeric proteins (Figures 1 and 2). Furthermore, we determined that the
17DFFTAP2 is important for the recognition by CsMab-2 in the 2xalanine scanning (Figure 4), and
Thr20 is a central amino acid of the epitope by the 1xalanine scanning (Figure 3). Figure 5 summarizes
the epitope of CsMab-2. In the epitope mapping of an anti-human CCR8 mAb (clone mAb1), CCRS8
chimeras, in which the N-terminus, ECL1, ECL 2, or ECL 3 were replaced with the corresponding
sequences from human CCR5, were used.[17] The mAb1 did not recognize ECL1-replaced CCR8 and
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ECL2-replaced CCRS, suggesting that both ECL1 and ECL2 are required for mAbl binding.[17]
Because we could not determine the binding epitope of our other anti-mCCR8 mAbs (CsMab-1 and
CsMab-3) in this study (data not shown), the substitution of two ECLs may be required for the
identification of the epitopes of those anti-mCCR8 mAbs.
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Figure 5. The schematic illustration of the CsMab-2 epitope, which was identified by 1xalanine
scanning and 2xalanine scanning. The 17-DFFTAP-2 is important for the recognition by CsMab-2 in the
2xalanine scanning (underlined). The Thr20 (red) is determined to be a central amino acid of the
epitope by the 1xalanine scanning.

The “hot” tumor is characterized by the massive infiltration of CD8* effector T cells, which is
important for the antitumor immune responses. Immune checkpoint inhibitors such as anti-PD-1
mAbs are effective in hot tumors. However, the response rate is still low due to the lack of CD8*
effector T cell infiltration or accumulation of Treg cells suppressing the effector activities, which is
characterized as “cold tumors”.[29,30] Since CCR8 expression is increased in tumor-infiltrated Treg
cells, CCR8 is one of the promising target for depleting of Treg cells selectively in tumors.[4] Anti-
mCCR8 mAbs have been used to suppress cancer growth in several cancer models.[7,8,31]
Furthermore, an anti-human CCR8 mAb (5-531011) was developed.[32] S-531011 has antibody-
dependent cell-mediated cytotoxicity activity against tumor-infiltrating CCR8* Treg cells and
neutralization activity against the CCRS signaling.[32] Meanwhile, there is no information about the
relationship between the Treg cells-depleting activity and epitope of the mAbs. Our strategy for
epitope identification would contribute not only to the understanding of mAb-epitope interaction
but also to the improvement of those therapeutic mAbs.
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