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Abstract: The CC chemokine receptor 3 (CCR3) is a receptor for CC chemokines, including 

CCL5/RANTES, CCL7/MCP-3, and CCL11/eotaxin. CCR3 is expressed on the surface of eosinophils, 

basophils, a subset of Th2 lymphocytes, mast cells, and airway epithelial cells. CCR3 and its ligands 

are involved in airway hyperresponsiveness in allergic asthma, ocular allergy, and cancers. 

Therefore, CCR3 is an attractive target for those therapies. Previously, anti-mouse CCR3 (mCCR3) 

monoclonal antibodies (mAbs), C3Mab-3 (rat IgG2a, kappa), and C3Mab-4 (rat IgG2a, kappa) were 

developed using the Cell-Based Immunization and Screening (CBIS) method. In this study, the 

binding epitope of these mAbs was investigated using flow cytometry. The CCR3 extracellular 

domain-substituted mutant analysis showed that C3Mab-3, C3Mab-4, and a commercially available 

mAb (J073E5) recognized the N-terminal region (amino acids 1–38) of mCCR3. Next, the alanine 

scanning was conducted in the N-terminal region. The results revealed that Ala2, Phe3, Asn4, and 

Thr5 of mCCR3 are involved in C3Mab-3 binding, whereas Ala2, Phe3, and Thr5 are essential to 

C3Mab-4 binding, and Ala2 and Phe3 are crucial to J073E5 binding. These results reveal the 

involvement of the N-terminus of mCCR3 in the recognition of C3Mab-3, C3Mab-4, and J073E5. 
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1. Introduction 

Chemokines are a family of small cytokines secreted by cells and play essential roles 

in cell migration, inflammation, and immune responses by binding to chemokine 

receptors [1-4]. The CC chemokine receptor 3 (CCR3) is a receptor for CC chemokines, 

including CCL5/RANTES, CCL7/MCP-3, and CCL11/eotaxin [5-7]. CCR3 is expressed on 

the surface of eosinophils, basophils, a subset of Th2 lymphocytes, mast cells, and airway 

epithelial cells [8-13]. CCR3 is a family of G protein-coupled receptors (GPCRs) that 

transduce extracellular signals to intracellular signaling molecules [14]. The CCR3 

signaling pathway is critical in eosinophil migration [15,16]. It has been reported that 

CCR3 and its ligands can cause airway hyperresponsiveness in a murine allergic asthma 

model [17-20], contributing to the ocular allergy [21]. Moreover, elevated eotaxin 

expression has been observed in colorectal cancer [22], breast cancer [23], and oral 

squamous cell carcinomas [24]. Therefore, CCR3 and its ligands are the therapeutic targets 

for allergic diseases and cancers [7,25]. 

GPCR has seven transmembrane domains, four extracellular regions, including an 

N-terminal region (residues 1–38), and three extracellular loops (ECL1; amino acids [aa] 

96–111, ECL2; aa 176–207, and ECL3; aa 269–285). Previously, monoclonal antibodies 
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(mAbs) have been developed against GPCRs, including an anti-mouse CCR2 mAb [26], 

an anti-human CCR2 mAb [27], an anti-mouse CCR3 (mCCR3) mAbs [28-30], an anti-

mouse CCR4 mAb [31], an anti-mouse CCR8 mAbs [32-34], an anti-human CCR9 mAb 

[35], and an anti-mouse CXCR6 mAb [36]. The binding epitopes of anti-CCR2, CCR4, 

CCR9, and CXCR6 mAbs, which were established using the peptide immunization 

method, were determined by enzyme-linked immunosorbent assay (ELISA) [37-39]. 

However, anti-mCCR3 mAbs, C3Mab-3 (rat IgG2a, kappa) [30], and C3Mab-4 (rat IgG2a, 

kappa) were established by the Cell-Based Immunization and Screening (CBIS) method. 

Therefore, ELISA could not be applied to their epitope mapping. 

In this study, epitope mapping of the anti-mCCR3 mAbs was conducted by flow 

cytometry using the extracellular region substitution and the alanine scanning methods 

to clarify the features of C3Mab-3 and C3Mab-4. 

2. Materials and Methods 

2.1. Cell lines 

Chinese hamster ovary (CHO)-K1 cell was obtained from the America Type Culture 

Collection (ATCC, Manassas, VA, USA). The CHO/mCCR3 cells were produced in our 

previous study [28]. The chimera and the point mutant plasmids were transfected into 

CHO-K1 cells using the Neon Transfection System (Thermo Fisher Scientific Inc., Wal-

tham, MA, USA). Stable transfectants were selected using a cell sorter (SH800; Sony Bio-

technology Inc., Tokyo, Japan). Cells were cultured in Roswell Park Memorial Institute 

(RPMI) 1640 medium (Nacalai Tesque, Inc., Kyoto, Japan) supplemented with 10% heat-

inactivated fetal bovine serum (FBS) (Thermo Fisher Scientific Inc.), 100 units/mL of pen-

icillin, 100 μg/mL streptomycin, and 0.25 μg/mL amphotericin B (Nacalai Tesque, Inc.) at 

37 ℃ in a humidified atmosphere containing 5% CO2. The stable transfectants were culti-

vated in a medium containing 0.5 mg/mL Zeocin (InvivoGen, San Diego, CA, USA). 

 

2.2. Plasmid construction 

Synthesized DNA (Eurofins Genomics KK, Tokyo, Japan) encoding mCCR3 

(Accession No.: NM_009914.4) [28-30] and mouse CCR8 (mCCR8; Accession No.: 

NM_007720.2) [32-34] were subcloned into a pCAG-Ble vector (FUJIFILM Wako Pure 

Chemical Corporation, Osaka, Japan), respectively. Chimeric mutants mCCR8 

(mCCR3p1-38), mCCR8 (mCCR3p96-111), mCCR8 (mCCR3p176-207), and mCCR8 

(mCCR3p269-285) were produced with a RAP [40,41] and a MAP tag [42,43] at their C-

terminus using the HotStar HiFidelity polymerase kit (Qiagen Inc., Hilden, Germany). 

Alanine (glycin) substitutions in the mCCR3 N-terminal region were conducted using 

QuikChange Lightning Site-Directed Mutagenesis Kits (Agilent Technologies Inc., Santa 

Clara, CA, USA). PCR fragments bearing the desired mutations were inserted into the 

pCAG-Ble vector (FUJIFILM Wako Pure Chemical Corporation) using the In-Fusion HD 

Cloning Kit (TaKaRa Bio, Inc., Shiga, Japan). 

 

2.3. Antibodies 

C3Mab-3 [30] and C3Mab-7 [29] were described previously. C3Mab-4 was also estab-

lished together with C3Mab-3. An anti-mCCR3 mAb (clone J073E5) was purchased from 

BioLegend (San Diego, CA, USA). A secondary Alexa Fluor 488-conjugated anti-rat IgG 

was purchased from Cell Signaling Technology, Inc. (Danvers, MA, USA) as well. 

 

2.4. Flow cytometry 

Cells were harvested after brief exposure to 0.25% trypsin/1 mM ethylenediaminetet-

raacetic acid (Nacalai Tesque, Inc.). After washing with 0.1% bovine serum albumin in 

phosphate-buffered saline, cells were treated with primary mAbs (1 μg/ml) for 30 min at 

4 ℃ and subsequently with Alexa Fluor 488-conjugated anti-rat IgG (1:1000; Cell Signaling 

Technology, Inc., Danvers, MA, USA). Fluorescence data were obtained using the EC800 

Cell Analyzer (Sony Biotechnology Inc.). 
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3. Results 

3.1. Determination of the epitope of anti-mCCR3 mAbs by flow cytometry using chimeric 

proteins. 

C3Mab-3 and C3Mab-4 were established using the CBIS method, and are applicable 

to flow cytometry, but not to ELISA. To investigate the binding epitope of C3Mab-3 and 

C3Mab-4, we focused on four extracellular regions of mCCR3 including the N-terminal 

region (aa 1-38), ECL1 (aa 96-111), ECL2 (aa 176-207), and ECL3 (aa 269-285). The four 

extracellular regions of mCCR3 were substituted into the corresponding regions of 

mCCR8, which possesses a similar amino acid structure to mCCR3. As shown in Fig. 1, 

mCCR8 (mCCR3p1-38), mCCR8 (mCCR3p96-111), mCCR8 (mCCR3p176-207), and 

mCCR8 (mCCR3p269-285) were generated. The chimeric proteins were transiently 

expressed on CHO-K1 cells, and their reactivities to C3Mab-3, C3Mab-4, and commercially 

available J073E5 were analyzed using flow cytometry. As shown in Fig. 2, C3Mab-3, 

C3Mab-4 and J073E5 reacted with mCCR8 (mCCR3p1-38) and mCCR3. In contrast, they 

did not react with mCCR8 (mCCR3p96-111), mCCR8 (mCCR3p176-207), and mCCR8 

(mCCR3p269-285). These results show that the N-terminal region of mCCR3 is recognized 

by C3Mab-3, C3Mab-4, and J073E5. 

 

Figure 1. Schematic illustration of mCCR8 and mCCR3 chimeric proteins. The four extracellular 

regions of mCCR3, including the N-terminal region (residues 1–38), ECL1 (residues 96–111), ECL2 

(residues 176–207), and ECL4 (residues 269–285) were substituted into the corresponding regions of 

mCCR8. ECL, extracellular loop. 
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Figure 2. Determination of the epitope of anti-mCCR3 mAbs by flow cytometry using chimeric 

proteins. C3Mab-3 (1 μg/mL) (A), C3Mab-4 (1 μg/mL) (B), and J073E5 (1 μg/mL) (C) were treated 

with CHO-K1 cells which were transiently expressed chimeric proteins for 30 min at 4°C, followed 

by the addition of Alexa488-conjugated anti-rat IgG. Red lines show the cells with anti-mCCR3 mAb 

treatment, and black lines show cells without anti-mCCR3 mAbs treatment as a negative control. 

3.2. Determination of the C3Mab-3 epitope by flow cytometry using alanine scanning. 

Next, alanine scanning was conducted in the N-terminal region except for Cys28. 

Thirty-six alanine substitution mutants of mCCR3 were constructed, and the mutant 

proteins were transiently expressed on CHO-K1 cells. The reactivity against C3Mab-3, 

C3Mab-4, and J073E5 was assessed using flow cytometry. As shown in Fig. 3A, C3Mab-3 

did not react with the four mutants (A2G, F3A, N4A, and T5A). In contrast, C3Mab-3 

reacted with the other 32 mutants. These results showed that four residues (Ala2, Phe3, 

Asn4, and Thr5) of mCCR3 are important for C3Mab-3 binding (Fig. 3B). C3Mab-4 did not 

react with three mutants (A2G, F3A, and T5A) but reacted with others (Fig. 4A), indicating 

that three residues (Ala2, Phe3, and Thr5) of mCCR3 are important for C3Mab-4 binding 

(Fig. 4B). J073E5 did not react with two mutants (A2G and F3A) but reacted with others 

(Fig. 5A), indicating that two residues (Ala2 and Phe3) of mCCR3 are important for J073E5 

binding (Fig. 5B). The cell surface expression of mCCR3 mutants on CHO-K1 cells was 

confirmed using anti-mCCR3 mAbs, C3Mab-7. It has already been confirmed that Phe15 

and Glu16 are essential for C3Mab-7 binding (manuscript submitted). We could confirm 

the cell surface expression of four mutants (A2G, F3A, N4A, and T5A) of mCCR3 using 

C3Mab-7 (Fig. 6). 
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Figure 3. Determination of the C3Mab-3 epitope by flow cytometry using alanine scanning. (A) 

C3Mab-3 (1 μg/mL) was treated with CHO-K1 cells which were transiently expressed mutant pro-

teins for 30 min at 4°C, followed by the addition of Alexa488-conjugated anti-rat IgG. Red lines show 

the cells with C3Mab-3 treatment, and black lines show cells without Ab treatment as a negative 

control. (B) The C3Mab-3 epitope for mCCR3 involves Ala2, Phe3, Asn4, and Thr5 of mCCR3. 
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Figure 4. Determination of the C3Mab-4 epitope by flow cytometry using alanine scanning. (A) 

C3Mab-4 (1 μg/mL) was treated with CHO-K1 cells which were transiently expressed mutant pro-

teins for 30 min at 4°C, followed by the addition of Alexa488-conjugated anti-rat IgG. Red lines show 

the cells with C3Mab-4 treatment, and black lines show cells without Ab treatment as a negative 

control. (B) The C3Mab-4 epitope for mCCR3 involves Ala2, Phe3, and Thr5 of mCCR3. 
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Figure 5. Determination of the J073E5 epitope by flow cytometry using alanine scanning. (A) 

J073E5 (1 μg/mL) was treated with CHO-K1 cells which were transiently expressed mutant proteins 

for 30 min at 4°C, followed by the addition of Alexa488-conjugated anti-rat IgG. Red lines show the 

cells with J073E5 treatment, and black lines show cells without Ab treatment as a negative control. 

(B) The J073E5 epitope for mCCR3 involves Ala2, and Phe3 of mCCR3. 
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Figure 6. Cell surface expression of mCCR3 mutants on CHO-K1 cells by flow cytometry. C3Mab-

7 (1 μg/mL) was treated with CHO-K1 cells which were transiently expressed mutant proteins for 

30 min at 4°C, followed by the addition of Alexa488-conjugated anti-rat IgG. Red lines show the 

cells with C3Mab-7 treatment, and black lines show cells without Ab treatment as a negative control. 

4. Discussion 

We have established various mAbs against membrane proteins using the CBIS 

method. Because the mAbs sometimes recognize the conformational epitope, they can be 

applied to flow cytometry but not to Western blotting and ELISA. Two anti-mCCR3 mAbs 

examined in this study, C3Mab-3 and C3Mab-4, were established using the CBIS method 

[30]. We first attempted to identify their epitope using synthetic peptides using ELISA. 

However, they did not recognize the synthetic peptides, including the mCCR3 N-terminal 

region (p1–19), which contains the epitope determined using flow cytometry (Fig. 3 and 

4). These results suggest that the residues participate in the formation of conformational 

epitope and/or undergo the post-translational modification on the cell surface. Further-

more, we could not exclude the possibility of the first Met as their epitopes. In the case of 

C3Mab-3 and C3Mab-4 epitopes, Asn4 and Thr5 are involved in the recognition. Although 

Asn and Thr are known to be N- and O- glycosylated respectively, there is no report on 

the glycosylation of Asn4 and Thr5 of mCCR3. Further studies were required to analyze 

the involvement of the posttranslational modification of these residues in the recognition 

by C3Mab-3 and C3Mab-4. 

Other anti-mCCR3 mAbs, C3Mab-6, and C3Mab-7, were also developed by mCCR3 

N-terminal peptide immunization [29]. It was found that they could recognize the 

synthetic peptide of the mCCR3 N-terminal region (p1-19) using ELISA and cell surface 

expressed mCCR3 by flow cytometry. Furthermore, Phe3, Asn4, Thr5, Asp6, Glu7, Lys9, 

Thr10, and Glu13 of mCCR3 were determined as C3Mab-6 epitope, whereas Phe15 and 

Glu16 as C3Mab-7 epitope (manuscript submitted). These results indicate that C3Mab-6 

and C3Mab-7 recognize both the naked N-terminal peptide and cell surface expressed 

mCCR3. Further studies are essential to understand the difference of mCCR3 recognitions 

between C3Mab-3/C3Mab-4 and C3Mab-6/C3Mab-7. 
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It has been reported that a CCR3 ligand, CCL11/eotaxin binds to the N-terminal 

region of CCR3 [44,45]. Therefore, our established anti-mCCR3 mAbs could compete with 

the ligand binding to mCCR3 and have neutralizing activity. Shen et al. reported that anti-

CCR3 mAb could significantly suppress airway eosinophilia and mucus overproduction 

in asthmatic mice; therefore, the blockage of the CCR3 axis may be an attractive strategy 

for asthma therapy [46]. In future studies, we would like to examine the neutralizing 

activities of these anti-mCCR3 mAbs. 
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