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Development of a Sensitive Anti-Mouse CD39 Monoclonal
Antibody (C39Mab-1) for Flow Cytometry

and Western Blot Analyses

Yuki Okada, Hiroyuki Suzuki, Mika K. Kaneko, and Yukinari Kato

CD39 is involved in adenosine metabolism by converting extracellular ATP to adenosine. As extracellular
adenosine plays a critical role in the immune suppression of the tumor microenvironment, the inhibition of
CD39 activity by monoclonal antibodies (mAbs) is one of the important strategies for tumor therapy. This study
developed specific and sensitive mAbs for mouse CD39 (mCD39) using the Cell-Based Immunization and
Screening method. The established anti-mCD39 mAb, C39Mab-1 (rat IgG2a, kappa), reacted with mCD39-
overexpressed Chinese hamster ovary-K1 (CHO/mCD39) by flow cytometry. The kinetic analysis using flow
cytometry indicated that the dissociation constant of C39Mab-1 for CHO/mCD39 was 7.3 · 10-9 M. Further-
more, C39Mab-1 detected the lysate of CHO/mCD39 by western blot analysis. These results indicated that
C39Mab-1 is useful for the detection of mCD39 in many functional studies.
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Introduction

E xtracellular adenosine, generated by the hydroly-
sis of extracellular ATP (eATP), mediates an immuno-

suppressive tumor microenvironment (TME).1 The high
concentration of eATP can be found in solid tumors due to the
passive release of cell death and active secretion by tumor
cells and other subsets in the TME.2 Following the release of
eATP, CD39 (ectonucleoside triphosphate dipho-
sphohydrolase 1; encoded by ENTPD1) hydrolyzes eATP to
ADP and AMP. Then, another rate-limiting ectoenzyme,
CD73 (5¢-nucleotidase; encoded by NT5E), dephosphory-
lates AMP into adenosine.3

Growing body of evidence suggests that adenosine-
mediated immunosuppression is critical for tumor immune
evasion. Various tumors showed the elevated expression of
CD39, which promotes the local accumulation of adenosine
surrounding tumors.4 The adenosine-mediated immunosup-
pressive effect functions via four G protein-coupled type 1
purinergic (P1) receptors, A1, A2A, A2B, and A3 expressed
on immune cells.5 Among the four P1 receptors, the A2A

and A2B are GS-coupled receptors and trigger intracellular
cAMP accumulation. The cAMP signaling mediates immu-

nosuppression by activation of effectors, including protein
kinase A.6

Sitkovsky’s group first reported the immunosuppressive
effects of the A2A receptor in vivo.7 Inflammatory stimuli that
caused minimal tissue damage in wild-type mice were suf-
ficient to induce extensive tissue damage, more prolonged
and higher levels of proinflammatory cytokines, and indi-
vidual death in mice lacking the A2A receptor.7 The group
also showed genetic evidence of the importance of the A2A

receptor in tumor immunity.8 These findings impacted anti-
tumor immunity by CD39–adenosine–A2 receptor axis and
several landmark studies have developed multiple strategies
targeting adenosine metabolism.3,9

The development of anti-CD39 monoclonal antibodies
(mAbs) is a strategy to modulate the adenosine metabolism.
A preclinical study revealed that an anti-mouse CD39
(mCD39) mAb (clone B66), which can inhibit mCD39 ac-
tivity in vitro, exhibited the antitumor effect in syngeneic
models by the monotherapy and combination therapy with
the programmed cell death-1 (PD-1) blockade.10 This
study also showed that B66 triggers an eATP–P2X7–
inflammasome–IL-18 pathway that promotes tumor immu-
nity and overcomes anti-PD-1 resistance.10 The anti-human
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CD39 mAbs (clones TTX-030, IPH5201, and SRF-617) were
designed to inhibit CD39 enzymatic activity via allosteric
inhibition and minimize Fc receptor-mediated engagement to
avoid the side effects.10,11 These mAbs have entered the
clinical trials for solid tumors with a combination of che-
motherapeutic agents or immune checkpoint inhibitors.3

Using the Cell-Based Immunization and Screening (CBIS)
method, we have developed many mAbs against membrane
proteins, such as CD19,12 CD20,13,14 CD133,15 EpCAM,16,17

HER2,18 HER3,19 KLRG1,20 TIGIT,21 TROP2,22,23 pro-
grammed cell death ligand 1 (PD-L1),24 podoplanin,25–36 and
CD44.37,38 The CBIS method includes the immunization of
antigen-overexpressed cells and high-throughput hybridoma
screening using flow cytometry. Anti-chemokine receptors
mAbs, including anti-mouse CCR3,39 anti-mouse CCR8,40

and anti-human CCR941 mAbs, were also successfully de-
veloped using the CBIS method.

In this study, novel anti-mCD39 mAbs were developed by
the CBIS method. We further evaluated its applications, in-
cluding flow cytometry and western blot analyses.

Materials and Methods

Preparation of cell lines

LN229, Chinese hamster ovary (CHO)-K1, and
P3X63Ag8U.1 (P3U1) were obtained from the American
Type Culture Collection (Manassas, VA).

The synthesized DNA (Eurofins Genomics KK) encoding
mCD39 (Accession No.: NM_009848) was subsequently
subcloned into a pCAGzeo_nPA-cRAPMAP vector, which is
derived from a pCAGzeo vector (FUJIFILM Wako Pure Che-
mical Corporation, Osaka, Japan), N-terminal PA tag,42–44 and
C-terminal RAP tag45,46 + MAP tag.47,48 The amino acid se-
quences of the tag system were as follows: PA tag, 12 amino
acids (GVAMPGAEDDVV); RAP tag, 12 amino acids
(DMVNPGLEDRIE); and MAP tag, 12 amino acids
(GDGMVPPGIEDK). The PA tag can be detected by an anti-
human podoplanin mAb (clone NZ-1).42–44,49–61 The mCD39
plasmid was transfected into CHO-K1 and LN229 cells, using a
Neon transfection system (Thermo Fisher Scientific Inc., Wal-
tham, MA). Stable transfectants were established through cell
sorting using a cell sorter (SH800; Sony Corp., Tokyo, Japan),
after which cultivation in a medium, containing 0.5 mg/mL of
Zeocin (InvivoGen, San Diego, CA) was conducted.

CHO-K1, mCD39-overexpressed CHO-K1 (CHO/
mCD39), and P3U1 were cultured in a Roswell Park Memorial
Institute (RPMI)-1640 medium (Nacalai Tesque, Inc., Kyoto,
Japan), with 10% heat-inactivated fetal bovine serum (FBS;
Thermo Fisher Scientific Inc.), 100 units/mL of penicillin,
100mg/mL of streptomycin, and 0.25mg/mL of amphotericin
B (Nacalai Tesque, Inc.). LN229 and mCD39-overexpressed
LN229 (LN229/mCD39) were cultured in Dulbecco’s Mod-
ified Eagle Medium (DMEM; Nacalai Tesque, Inc.), supple-
mented with 10% FBS, 100 U/mL of penicillin, 100mg/mL
streptomycin, and 0.25mg/mL amphotericin B.

All cells were grown in a humidified incubator at 37�C, at
an atmosphere of 5% carbon dioxide and 95% air.

Antibodies

An anti-mCD39 mAb (clone 5F2, mouse IgG1, kappa) was
purchased from BioLegend (San Diego, CA). Alexa Fluor

488-conjugated anti-rat IgG and Alexa Fluor 488-conjugated
anti-mouse IgG secondary Abs were purchased from Cell
Signaling Technology, Inc. (Danvers, MA).

Production of hybridomas

A 5-week-old Sprague–Dawley rat was purchased from
CLEA Japan (Tokyo, Japan). The animal was housed under
specific pathogen-free conditions. All animal experiments
were performed according to the relevant guidelines and
regulations to minimize animal suffering and distress in the
laboratory. The Animal Care and Use Committee of Tohoku
University (Permit No.: 2019NiA-001) approved animal
experiments. The rat was monitored daily for health during
the complete 4-week duration of the experiment. A reduction
of more than 25% of the total body weight was defined as a
humane endpoint. During the sacrifice, the rat was euthanized
through cervical dislocation, after which death was verified
through respiratory and cardiac arrest.

To develop mAbs against mCD39, we intraperitoneally
immunized one rat with LN229/mCD39 (1 · 109 cells) plus
Imject Alum (Thermo Fisher Scientific Inc.). The procedure
included three additional injections every week (1 · 109

cells/rat), which were followed by a final booster intraperi-
toneal injection (1 · 109 cells/rat), 2 days before harvesting
spleen cells. The harvested spleen cells were subsequently
fused with P3U1 cells, using PEG1500 (Roche Diagnostics,
Indianapolis, IN), after which hybridomas were grown in the
RPMI-1640 medium with 10% FBS, 100 units/mL of peni-
cillin, 100 lg/mL of streptomycin, and 0.25 lg/mL of am-
photericin B. For the hybridoma selection, hypoxanthine,
aminopterin, and thymidine (Thermo Fisher Scientific Inc.)
were added into the medium. The supernatants were subse-
quently screened using flow cytometry using CHO/mCD39
and CHO-K1.

Purification of mAbs

The cultured supernatants of C39Mab-1-producing hy-
bridomas were collected through centrifugation at 2330 g for
5 minutes, followed by filtration using Steritop (0.22mm,
Merck KGaA, Darmstadt, Germany). The filtered superna-
tants were subsequently applied to 1 mL of Protein G Se-
pharose 4 Fast Flow (GE Healthcare, Chicago, IL). After
washing with phosphate-buffered saline (PBS), bound anti-
bodies were eluted with an IgG elution buffer (Thermo Fisher
Scientific Inc.), followed by immediate neutralization of el-
uates, using 1 M Tris-HCl (pH 8.0). Finally, the eluates were
concentrated, after which the elution buffer was replaced
with PBS using Amicon Ultra (Merck KGaA).

Flow cytometric analysis

CHO-K1 and CHO/mCD39 were harvested after a brief
exposure to 0.25% trypsin and 1 mM ethylenediaminete-
traacetic acid (Nacalai Tesque, Inc.). The cells were subse-
quently washed with 0.1% bovine serum albumin in PBS and
treated with 0.001, 0.01, 0.1, and 1 lg/mL of primary mAbs
for 30 minutes at 4�C. The cells were treated with Alexa
Fluor 488-conjugated anti-rat IgG or Alexa Fluor 488-
conjugated anti-mouse IgG (1:2,000). The fluorescence data
were collected using the SA3800 Cell Analyzer (Sony Corp.).
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Determination of dissociation constant
through flow cytometry

CHO/mCD39 were suspended in 100 lL serially diluted
C39Mab-1 for 30 min at 4�C. The cells were treated with
50 lL of Alexa Fluor 488-conjugated anti-rat IgG (1:200).
The fluorescence data were collected, using the SA3800 Cell
Analyzer. The dissociation constant (KD) was subsequently
calculated by fitting saturation binding curves to the built-in;
one-site binding models in GraphPad PRISM 8 (GraphPad
Software, Inc., La Jolla, CA).

Western blot analysis

Cell lysates were boiled in sodium dodecyl sulfate sample
buffer (Nacalai Tesque, Inc.). The protein lysates (10 lg)
were separated on 5%–20% polyacrylamide gels (FUJIFILM
Wako Pure Chemical Corporation) and transferred onto
polyvinylidene difluoride membranes (Merck KGaA). After
blocking with 4% skim milk (Nacalai Tesque, Inc.) in PBS
with 0.05% Tween 20, the membranes were incubated with
10 lg/mL of C39Mab-1, 1 lg/mL of an anti-isocitrate dehy-
drogenase 1 (IDH1) mAb (clone RcMab-1),62,63 or 1 lg/mL
of NZ-1 (an anti-PA tag mAb). The membranes were then
incubated with peroxidase-conjugated anti-rat immunoglob-
ulins (diluted 1:10,000; Sigma-Aldrich Corp., St. Louis,
MO). Finally, the protein bands were detected with Im-
munoStar LD (FUJIFILM Wako Pure Chemical Corporation)
using a Sayaca-Imager (DRC Co. Ltd., Tokyo, Japan).

Results

Development of anti-mCD39 mAbs
by the CBIS method

To develop anti-mCD39 mAbs, one rat was immunized
with LN229/mCD39 cells (Fig. 1A). The spleen was then
excised from the rat, and splenocytes were fused with P3U1
cells (Fig. 1B). The developed hybridomas were subse-
quently seeded into ten 96-well plates and cultivated for 6
days. The positive wells were screened by the selection of
mCD39-expressing cell-reactive and CHO-K1-nonreactive
supernatants, using flow cytometry (Fig. 1C). After the lim-
iting dilution and several additional screenings, an anti-
mCD39 mAb, C39Mab-1 (rat IgG2a, kappa), was finally
established (Fig. 1D).

Flow cytometric analyses

We conducted flow cytometry using anti-mCD39 mAbs
(C39Mab-1 and 5F2) against CHO/mCD39 and CHO-K1 cell
lines. C39Mab-1 recognized CHO/mCD39 cells dose-
dependently at 1, 0.1, 0.01, and 0.001 lg/mL. In contrast, 5F2
needed more than 0.01 lg/mL for the detection of
CHO/mCD39 (Fig. 2A). Parental CHO-K1 cells were not
recognized even at 1 lg/mL of all mAbs (Fig. 2B).

Kinetic analyses of C39Mab-1 against
mCD39-overexpressed cells using flow cytometry

To determine the KD of C39Mab-1 with mCD39-
overexpressed cells, we conducted kinetic analysis by flow
cytometry using CHO/mCD39 (Fig. 3). The geometric
mean of the fluorescence intensity was plotted versus the

concentration of C39Mab-1. The KD value of C39Mab-1 for
CHO/mCD39 was determined as 7.3 · 10-9 M.

Western blot analysis

Western blotting was performed to further assess the
specificity of C39Mab-1. The cell lysates of CHO-K1 and
CHO/mCD39 were probed. As shown in Figure 4A, C39Mab-
1 detected mCD39 as a *100-kDa band. An anti-PA tag
mAb (clone NZ-1) recognized the lysates from CHO/mCD39
(*100 kDa, mainly) (Fig. 4B). These results indicated that
C39Mab-1 can detect mCD39 specifically by western blot
analysis.

Discussion

In the TME, extracellular levels of ATP can reach 100–
500 mM compared to the nanomolar order in normal tissues.9

CD39 can rapidly hydrolyze and convert to adenosine in

FIG. 1. A schematic illustration demonstrating the pro-
duction of anti-mCD39 mAbs. (A) CD39 is anchored to the
membrane by two transmembrane domains at the two ends
of the molecule. LN229/mCD39 cells were immunized into
a Sprague–Dawley rat, using an intraperitoneal injection.
(B) The spleen cells were then fused with P3U1 cells.
(C) Subsequently, the culture supernatants were screened
through flow cytometry to select anti-mCD39 mAb-
producing hybridomas. (D) After limiting dilution and some
additional screenings, anti-mCD39 mAbs were finally es-
tablished. mAbs, monoclonal antibodies.

26 OKADA ET AL.

D
ow

nl
oa

de
d 

by
 Y

uk
in

ar
i K

at
o 

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

2/
26

/2
4.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



cooperation with CD73. In this TME, an enzymatic inhibitor
of CD39 is the rational mechanism to inhibit the production
of immunosuppressive adenosine. The clinically tested an
anti-CD39 mAb, TTX-030 (human IgG4), had a sub-
nanomolar EC50 for human CD39-overexpressed CHO cells
in the flow cytometry-based assay like in Figure 3. Further-
more, TTX-030 allosterically inhibited the enzymatic activ-
ity of CD39 in the recombinant human CD39 extracellular
domain and membrane-bound cellular CD39.64 We will in-
vestigate the effect of C39Mab-1 on the enzymatic activity of
mCD39 in future studies.

Recently, Zhang et al.65 demonstrated the application of an
anti-mCD39 mAb for tumor therapy by the depletion of
immunosuppressive cells through enhanced Fcg receptor–

mediated antibody-dependent cellular cytotoxicity (ADCC).
They found that mCD39 expression on tumor-infiltrating
immune and vascular endothelial cells was markedly higher
than that in normal tissues. They used a nonneutralizing anti-
mCD39 mAb (clone 5F2, mouse IgG1) and screened an
isotype-switched hybridoma subline of the IgG2c isotype
which has more potent ADCC activities. To enhance the ef-
fector functions, the fucosyltransferase 8 gene was deleted in
the 5F2 hybridomas using clustered regularly interspaced
short palindromic repeats technology to produce the afuco-
sylated antibody. They showed that the afucosylated anti-
mCD39 IgG2c exerted the potent antitumor effect against
mouse melanoma and colorectal tumor models through the
depletion of regulatory/exhausted T cells, tumor-associated

FIG. 2. Flow cytometry to mCD39-overexpressing cells using anti-mCD39 mAbs. CHO/mCD39 (A) and CHO-K1
(B) cells were treated with 0.001–1 mg/mL of C39Mab-1 and 5F2, followed by treatment with Alexa Fluor 488-conjugated
anti-rat IgG (for C39Mab-1) or Alexa Fluor 488-conjugated anti-mouse IgG (for 5F2). The black line represents the negative
control.
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macrophages, and tumor vasculature with high mCD39
expression.

We previously produced recombinant antibodies, which
were converted into mouse IgG2a subclass from mouse IgG1.
Furthermore, we produced afucosylated IgG2a mAbs using
Fut8-deficient CHO-K1 cells to potentiate the ADCC activ-
ity. The afucosylated mAbs showed potent antitumor activity
in mouse xenograft models.66–73 Therefore, a class-switched
and afucosylated version of C39Mab-1 could be used to
evaluate the antitumor activity in vivo.
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