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Development of an Anti-EphB4 Monoclonal Antibody
for Multiple Applications Against Breast Cancers

Ren Nanamiya, Hiroyuki Suzuki, Mika K. Kaneko, and Yukinari Kato

The erythropoietin-producing hepatocellular carcinoma (Eph) receptors are the largest receptor tyrosine kinase
family. EphB4 is essential for cell adhesion and motility during embryogenesis. Pathologically, EphB4 is
overexpressed and contributes to poor prognosis in various tumors. Therefore, specific monoclonal antibodies
(mAbs) should be developed to predict the prognosis for multiple tumors with high EphB4 expression, in-
cluding breast and gastric cancers. This study aimed to develop specific anti-EphB4 mAbs for multiple ap-
plications using the Cell-Based Immunization and Screening method. EphB4-overexpressed Chinese hamster
ovary (CHO)-K1 (CHO/EphB4) cells were immunized into mice, and we established an anti-EphB4 mAb
(clone B4Mab-7), which is applicable for flow cytometry, Western blot, and immunohistochemistry (IHC).
B4Mab-7 reacted with endogenous EphB4-positive breast cancer cell line, MCF-7, but did not react with
EphB4-knockout MCF-7 (BINDS-52) in flow cytometry. Dissociation constant (KD) values were determined to
be 2.9 · 10-9 M and 1.3 · 10-9 M by flow cytometric analysis for CHO/EphB4 and MCF-7 cells, respectively.
B4Mab-7 detected the EphB4 protein bands from breast cancer cells in Western blot, and stained breast cancer
tissues in IHC. Altogether, B4Mab-7 is very useful for detecting EphB4 in various applications.
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Introduction

B reast cancer is a malignant tumor with overwhelm-
ingly high incidence in women. In 2020, there were

estimated 2,261,419 new breast cancer cases (11.7% of all
cancer cases) and estimated 684,996 deaths (6.9% of all
cancer deaths) worldwide.1 In most developed countries,
breast cancer fatality rates have been declining in recent
years, owing to improved treatment strategies and earlier
detection techniques.2–4 Breast cancer treatment currently
includes surgery, radiation therapy, chemotherapy, and mo-
lecular targeted therapy.5–7

Molecular targeted therapy depends on the subtype of
breast cancer. Breast cancers are categorized into clinico-
pathological surrogate intrinsic subtypes defined by immu-
nohistochemistry (IHC) testing of estrogen receptor (ER),
progesterone receptor (PR), human epidermal growth factor
receptor 2 (HER2), and Ki-67 status.8–10 Breast cancer sub-
types can be largely classified into hormone receptor (ER or

PR)-positive luminal A, luminal B, HER2-positive, and
triple-negative breast cancer (TNBC).8–10

The erythropoietin-producing hepatocellular carcinoma
(Eph) receptors belong to the largest family of receptor tyro-
sine kinases in mammals.11 Eph receptors are physiologically
associated with angiogenesis, cell migration, vascularization,
axon guidance, and neurogenesis.12 The Eph family was first
discovered in human cancer cell lines in 1987,13 and is now
known to have two classes of receptors consisting of nine
EphA members and five EphB members in humans.14

The extracellular region of the Eph receptor consists of a
ligand binding domain, followed by a cysteine-rich domain
(including the sushi and epidermal growth factor-like do-
mains) and two fibronectin domains.15,16 The intracellular
side of the Eph receptor consists of a transmembrane region, a
tyrosine kinase domain, a sterile alpha motif, and a PDZ
domain. The EphA receptor binds promiscuously to ephrin A
ligands (five types) and the EphB receptor binds promiscu-
ously to ephrin B ligands (three types), but there may be
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cross-talk between the groups.17–23 In contrast to other Eph
receptors, EphB4 shows clear specificity for the ligand
ephrinB2 and very weak binding affinity for ephrinB1 and
ephrinB3.16

EphB4 and ephrinB2 are biologically essential for cell
adhesion, cell migration, stabilization, branching, and re-
modeling during embryogenesis for cardiovascular forma-
tion.24–30 Mice lacking either EphB4 (expressed in veins) or
ephrinB2 (expressed in arteries) showed identical defects in
the formation of capillary connections between the network
of arteries and veins in the head and yolk sac, resulting in
embryonic lethal.29–32 EphB4 and ephrinB2 create a repul-
sive effect between them and act to prevent the fusion of
veins with the arteries in adults. Phosphorylation of ephrinB2
triggers angiogenesis, and downstream inhibition of
phosphorylation-dependent or PDZ domain-dependent sig-
naling of the ephrinB2 prevents endothelial cell engraftment
and the appropriate association of endothelial cells with other
endothelial cells and with the pericytes.25

EphB4 is pathologically overexpressed in various malig-
nant tumors, including breast cancer,33–35 lung cancer,36–38

gastric cancer,39 colorectal cancer,40,41 acute myeloid leu-
kemia,42 cervical cancer,43 glioma,44 ovarian cancer,45,46

prostate cancer,47,48 thyroid cancer,49,50 and bladder can-
cer,51,52 and contributes to poor prognosis. Mutations in the
phosphorylation site of the EphB4 intracellular region in lung
cancer promote tumor growth in vitro.53 EphB4 gene am-
plification has been found and correlated with higher tumor
stage in various tumors.34,48,54 Therefore, mutations, gene
amplification, and overexpression of EphB4 contribute to
malignant progression. EphB4 is involved in cell prolifera-
tion, migration, differentiation, and angiogenesis in various
cancers.55

Several data have been reported on the forward and reverse
signaling of EphB4 and ephrinB2 in tumors. EphB4 extra-
cellular domain can induce angiogenic responses by stimu-
lating ephrinB2 reverse signaling in cultured endothelial cells
and promote tumor growth.56 On the other hand, ephrinB2-
independent effects of EphB4 have also been reported in
tumors.42,57 Several reports have shown that high expression
of EphB4 in tumors causes activation of ligand-independent
downstream signaling, and the effect of EphB4 on cancer
malignancy in the absence of ephrinB2 has been exam-
ined.42,58 The ephrinB2 expression in breast and lung cancer
cell lines with high expression of EphB4 is very low com-
pared to normal cell lines.37,59 Therefore, EphB4 may often
contribute to tumor malignancy by ligand-independent ef-
fects in cancer patients.

In breast cancer in particular, EphB4 is expressed endog-
enously in numerous cell lines,33,34 and the EphB4-positive
rate in immunohistochemical staining is high.60 In breast
cancer cell lines, the knockdown of EphB4 by small inter-
fering RNA results in reduced cell viability, activation of
caspase-8, and induction of apoptosis.34 Furthermore, EphB4
knockdown in a mouse breast cancer xenograft model re-
sulted in significantly smaller tumors, induced apoptosis, and
reduced tumor vascular distribution.34 Ding et al. reported
that overexpression of EphB4 caused gain-of-function ac-
tivity in HER2-positive breast cancer cell lines and resistance
to lapatinib, a dual HER2/epidermal growth factor receptor
inhibitor.61 Comparison of EphB4 mRNA expression levels
in four different clinicopathological surrogate intrinsic sub-

types of breast cancer revealed that EphB4 transcription is
significantly higher in HER2-positive breast cancer and
TNBC than luminal breast cancer.62

EphB4 could be a useful diagnostic target for prognosti-
cation and therapeutic targets of breast cancers. Therefore, a
specific monoclonal antibody (mAb) against EphB4 is nee-
ded to facilitate and ensure the diagnosis of breast cancer
subtype and to determine treatment strategies. In this study,
we report the establishment of a specific mAb against EphB4
for flow cytometric, Western blot, and immunohistochemical
analyses.

Materials and Methods

Plasmid preparation

Synthesized DNA encoding human EphB4 (Accession No.
NM_004444; Catalog No.: RC208559) was purchased from
OriGene Technologies, Inc. (Rockville, MD, USA). The
signal sequence was excluded and the EphB4 open reading
frame with an N-terminal PA16 tag or an N-terminal MAP
tag was subcloned into a pCAG-Ble vector (FUJIFILM Wako
Pure Chemical Corporation, Osaka, Japan) using an In-
Fusion HD Cloning Kit (Takara Bio, Inc., Shiga, Japan); the
recombinant expression vectors were named as pCAG/PA16-
EphB4 and pCAG/MAP-EphB4 DNA with an N-terminal
PA16 and with an N-terminal MAP tag, respectively. The
amino acid sequences of each protein tag are as follows:
PA16 tag, 16 amino acids (GLEGGVAMPGAEDDVV), and
MAP tag,63 12 amino acids (GDGMVPPGIEDK).64 The
clone NZ-1 (rat IgG2a, lambda) was used for PA16 tag,65 and
clone PMab-1 (rat IgG2a, kappa) was used for MAP tag.64

Cell lines

Chinese hamster ovary (CHO)-K1 and P3X63Ag8U.1
(P3U1) were obtained from the American Type Culture
Collection (ATCC, Manassas, VA, USA). MCF-7 was ob-
tained from the Cell Resource Center for Biomedical Re-
search Institute of Development, Aging and Cancer, Tohoku
University (Miyagi, Japan). CHO-K1 cells that overex-
press PA16-EphB4 (CHO/EphB4) and MAP-EphB4 (CHO/
MAP-EphB4) were generated by transfection of pCAG/
PA16-EphB4 and pCAG/MAP-EphB4 to CHO-K1 cells,
respectively, using Lipofectamine LTX Reagent (Thermo
Fisher Scientific, Inc., Waltham, MA, USA). Stable trans-
fectants were sorted using a cell sorter (SH800; Sony Corp.,
Tokyo, Japan) and cultivated in a medium containing
0.5 mg/mL of Zeocin (InvivoGen, San Diego, CA, USA). The
MCF-7/EphB4-knockout (KO) cell line (BINDS-52) was
generated by transfection using CRISPR/Cas9 plasmids
(Assay ID: CRISPR710315_SGM) that target EphB4
(Thermo Fisher Scientific, Inc.). Plasmids were transfected
using a Neon Transfection System (Thermo Fisher Scientific,
Inc.). Stable transfectants were sorted using a cell sorter
(SH800).

CHO-K1, P3U1, CHO/EphB4, CHO/MAP-EphB4, MCF-
7, and BINDS-52 cells were cultured in a Roswell Park
Memorial Institute (RPMI)-1640 medium (Nacalai Tesque,
Inc., Kyoto, Japan). All media were supplemented with 10%
heat-inactivated fetal bovine serum (Thermo Fisher Scien-
tific, Inc.), 100 U/mL of penicillin, 100 lg/mL of strepto-
mycin, and 0.25 lg/mL of amphotericin B (Nacalai Tesque,
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Inc.). All cells were cultured in a humidified incubator at
37�C, 5% CO2, and 95% air.

Hybridoma production

Female BALB/c mice (5 weeks old) were purchased from
CLEA Japan (Tokyo, Japan). The animals were housed under
specific pathogen-free conditions. All animal experiments
were conducted by relevant guidelines and regulations to
minimize the pain and suffering of animals in the laboratory.
Animal experiments were approved by the Animal Care and
Use Committee of Tohoku University (Permit No.:
2022MdA-001). Mice were monitored daily for health during
the full 5-week duration of the experiment. A reduction of
more than 25% of total body weight was defined as a humane
endpoint. For splenectomy, mice were euthanized by cervical
dislocation and death was confirmed by respiratory arrest and
cardiac arrest.

To develop mAbs against EphB4, we used Cell-Based
Immunization and Screening (CBIS) method.66–75 Briefly,
two BALB/c mice were injected intraperitoneally with a
mixture of CHO/MAP-EphB4 cells (1 · 108/mouse) with
Imject Alum (Thermo Fisher Scientific, Inc.) as adjuvant only
at the first immunization; the second immunization was
performed 1 week after the first, and the third to fifth im-
munizations were performed at the same interval. Two days
after the fifth immunization as boost immunization, mice
were sacrificed and splenocytes were collected. The har-
vested spleen cells were subsequently fused with P3U1 cells
using Polyethylene Glycol (PEG) 1500 (Roche Diagnostics,
Indianapolis, IN, USA), and the hybridomas were grown in
an RPMI-1640 medium supplemented with hypoxanthine,
aminopterin, and thymidine for selection (Thermo Fisher
Scientific, Inc.) on ten 96-well plates. Culture supernatants
were screened by flow cytometry as described below.

Flow cytometry

Cultured cells were collected after brief exposure to 0.25%
trypsin and 1 mM ethylenediaminetetraacetic acid (EDTA;
Nacalai Tesque, Inc.). They were once washed with 0.1%
bovine serum albumin (BSA) in phosphate-buffered saline
(PBS) and treated with primary mAbs for 30 minutes at 4�C.
Fluorescein isothiocyanate-conjugated anti-EphB4 mAb
(clone: 04) was purchased from Abcam (Cambridge, MA,
USA). After washing cells twice with 0.1% BSA in PBS, the
cells were then treated with Alexa Fluor 488-conjugated anti-
mouse IgG (1:1000; Cell Signaling Technology, Inc., Dan-
vers, MA, USA) for 30 minutes at 4�C. After three washes,
cells were diluted with 100 lL and shaken before measure-
ment. Fluorescence data were collected using the SA3800
Cell Analyzer (Sony Corp.). The collected data were ana-
lyzed with FlowJo software (FlowJo, OR, USA).

Determination of dissociation constant
by flow cytometry

CHO/EphB4 and MCF-7 cells were suspended in 100 lL
of B4Mab-7 (0.006–50 lg/mL) serially diluted 1/2-fold, and
exposed for 30 minutes, and the cells were washed twice with
0.1% BSA in PBS. Then, 50 lL of Alexa Fluor 488-
conjugated anti-mouse IgG (1:200; Cell Signaling Technol-
ogy, Inc.) was added and exposed for 30 minutes. After
washing twice, the cells were transferred to a 96-well plate

for measurement. Fluorescence data were collected using the
SA3800 Cell Analyzer. The collected data were analyzed
with FlowJo software. The dissociation constant (KD) was
calculated by fitting binding isotherms to built-in, one-site
binding models in GraphPad PRISM 8 (GraphPad Software,
Inc., La Jolla, CA, USA).

Western blot analysis

Cell lysates were extracted from cultured cells using 1%
Triton X-100, and cell remnants were removed by centrifu-
gation. The cell lysates (10 lg) were boiled in sodium do-
decyl sulfate sample buffer (Nacalai Tesque, Inc.). These
proteins were then electrophoresed on 5%–20% polyacryl-
amide gels (FUJIFILM Wako Pure Chemical Corporation)
and transferred onto polyvinylidene difluoride (PVDF)
membranes (Merck KGaA, Darmstadt, Germany).

After blocking with 4% skim milk (Nacalai Tesque, Inc.)
for 1 hour, membranes were incubated with 1 lg/mL of
B4Mab-7 or 1 lg/mL of an anti-isocitrate dehydrogenase 1
(IDH1) mAb, RcMab-1,76 for 30 minutes. Then, the mem-
branes were incubated with peroxidase-conjugated anti-mouse
immunoglobulins (diluted 1:2000; Agilent Technologies, Inc.,
Santa Clara, CA, USA), or anti-rat immunoglobulins (diluted
1:10,000; Sigma-Aldrich Corp., St. Louis, MO, USA) for 30
minutes, respectively. Finally, the protein bands were visual-
ized using ImmunoStar LD (FUJIFILM Wako Pure Chemical
Corporation) and Sayaca-Imager (DRC Co. Ltd., Tokyo, Ja-
pan). All Western blot procedures were performed at room
temperature, and all primary and secondary antibodies were
diluted with 4% skim milk.

Immunohistochemical analysis

A formalin-fixed paraffin-embedded (FFPE) breast cancer
tissue microarray (Cat. No.: T8235721-5, Lot. No.: B904111)
containing 63 cases was purchased from BioChain Institute,
Inc. (Newark, CA, USA). The antigen retrieval was per-
formed using a direct autoclave treatment at 121�C for 20
minutes in EnVision FLEX Target Retrieval Solution High
pH (Agilent Technologies, Inc.), Peroxidase blocking was
performed by treatment with 3.0% H2O2 for 10 minutes.
Blocking was then conducted using SuperBlock Blocking
Buffer (Thermo Fisher Scientific, Inc.).

Sections were then incubated with 10 lg/mL of B4Mab-7
(diluted by SuperBlock Blocking Buffer) or buffer control for
1 hour at room temperature, followed by treatment with an
Envision+ kit (Agilent Technologies, Inc.) for 30 minutes.
Antigen–antibody complexes were visualized using 3,3¢-
diaminobenzidine tetrahydrochloride solution (Agilent
Technologies, Inc.) for 2 minutes, and sections were then
counterstained with hematoxylin (FUJIFILM Wako Pure
Chemical Corporation) for 5 minutes. The intensity of
staining was evaluated as 0, 1+, 2+, or 3+. Hematoxylin and
eosin (H&E) staining (FUJIFILM Wako Pure Chemical
Corporation) was performed using consecutive tissue sec-
tions at room temperature for 5 and 10 minutes, respectively.

Results

Establishment of anti-EphB4 mAbs

To establish anti-EphB4 mAbs, we employed the CBIS
method, using stable transfectants for both immunizations and
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flow cytometric screening (Fig. 1). Two BALB/c mice were
immunized with CHO/MAP-EphB4 cells. Hybridomas were
then seeded onto 96-well plates, and culture supernatants
positive for CHO/EphB4 and negative for CHO-K1 were se-
lected by flow cytometry. The positive count was 54/956 wells
(5.65%), which were cloned by limiting dilution. After several
additional screenings, an anti-EphB4 mAb, B4Mab-7 (IgG1,
kappa), was finally established. Subsequently, the specificity
and usefulness of B4Mab-7 were evaluated by flow cytometry,
Western blot, and immunohistochemical analyses.

Flow cytometric analyses

We next examined the B4Mab-7 reactivity against breast
cancer cell lines in flow cytometry. B4Mab-7 reacted with

CHO/EphB4 cells in a dose-dependent manner (Fig. 2A),
whereas it did not react with parental CHO-K1 cells
(Fig. 2B). B4Mab-7 also showed a concentration-dependent
reactivity to breast cancer cell line, MCF-7 (Fig. 2C). These
results indicated that B4Mab-7 recognizes not only exoge-
nous EphB4 but also endogenous EphB4 on MCF-7 cells.

To confirm the specificity of B4Mab-7 against MCF-7, we
established EphB4-knockout MCF-7 (BINDS-52) by a
CRISPR/Cas9 system, and performed flow cytometry using
B4Mab-7 against BINDS-52. B4Mab-7 showed no reaction
against BINDS-52 cells (Fig. 2D). We also confirmed that a
commercially available mAb (clone 04) showed similar re-
activity to CHO/EphB4 and MCF-7 cells, and never recog-
nized BINDS-52 cells (Supplementary Fig. S1). These results
suggest that B4Mab-7 is specific for EphB4 on MCF-7 cells.

FIG. 1. Production of anti-EphB4 mAbs. The procedure of CBIS method. (A) The EphB4-overexpressed cell lines were
immunized into BALB/c mice by intraperitoneal injection. (B) Mouse spleens were harvested, fused with splenocytes and
myeloma cells, and seeded into 96-well plates. (C) Hybridoma screening was performed using flow cytometry to select
wells that did not react with the parental cell lines, but with the EphB4-overexpressed cell lines. (D) Positive wells were
cloned by limiting dilution. The specificity was confirmed using an EphB4-knockout breast cancer cell line. CBIS, Cell-
Based Immunization and Screening.
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Determination of the binding affinity of B4Mab-7

To investigate the binding ability of B4Mab-7, the ap-
parent KD of B4Mab-7 for CHO/EphB4 and MCF-7 was
evaluated using flow cytometry. The KD values of B4Mab-7
for CHO/EphB4 and MCF-7 were 2.9 · 10-9 M and
1.3 · 10-9 M, respectively (Fig. 3). These results indicated
that B4Mab-7 possesses a high binding affinity for
CHO/EphB4 and MCF-7 cells.

Western blot analysis

Then we examined whether B4Mab-7 is also useful in
Western blot analysis. B4Mab-7 detected strong signals of
100–130-kDa in CHO/EphB4 and MCF-7 cells, but not in
CHO-K1 and EphB4-knockout MCF-7 (BINDS-52) cells
(Fig. 4A). These results suggest that B4Mab-7 specifically
and sensitively recognizes endogenous EphB4 in breast
cancer cell lines on Western blot analysis.

Immunohistochemical analysis against breast cancers

We next investigated whether B4Mab-7 applies to im-
munohistochemical analysis against FFPE breast cancer

sections.33–35 As depicted in Figure 5A, D, G, J, M, and P,
B4Mab-7 strongly stained the plasma membrane of breast
cancer cells, and weak staining was also observed in the
cytoplasm. B4Mab-7 stained the membranes of cancer cells
in 41 of 63 (65.1%) breast cancers (Fig. 5A, D: score 3+,
Fig. 5G, J: score 2+, Fig. 5M, P: score 0; scores were divided
by the intensity of membrane staining). Treatment with
control buffer (Fig. 5B, E, H, K, N, and Q) and H&E staining
(Fig. 5C, F, I, L, O, and R) were performed on consecutive
breast cancer tissues.

B4Mab-7 also stained venous or lymphatic endothelial
cells (Supplementary Fig. S2B, arrows), although it did not
stain stromal tissues. These results indicate that B4Mab-7 is
useful for immunohistochemical analysis of FFPE tumor
sections. All staining results of B4Mab-7 for breast cancers
are shown in Table 1. B4Mab-7 could stain invasive ductal
carcinomas, invasive lobular carcinoma, adenocarcinoma,
fibroadenoma, and medullary carcinoma (Table 2).

Discussion

In this study, we successfully developed a specific anti-
EphB4 mAb, B4Mab-7, which can be adapted to any

FIG. 2. Flow cytometry using B4Mab-7. (A–D) CHO/EphB4, CHO-K1, MCF-7, and BINDS-52 (EphB4-knockout MCF-7)
were treated with 0.1 or 1mg/mL of B4Mab-7, followed by treatment with Alexa Fluor 488-conjugated anti-mouse IgG. Filled,
negative control. CHO, Chinese hamster ovary.

FIG. 3. Determination of the binding affinity of B4Mab-7. (A, B) CHO/EphB4 and MCF-7 cells were suspended in
100 mL of serially diluted B4Mab-7 (6 ng/mL to 50 mg/mL). Alexa Fluor 488-conjugated anti-mouse IgG was then added.
Fluorescence data were collected using the SA3800 cell analyzer.
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experimental methods. The CBIS method does not need pu-
rified proteins for immunization and screening, and could
target the three-dimensional structure of transmembrane pro-
teins. B4Mab-7 did not react with EphB4-knockout MCF-7
(BINDS-52), as shown in Figure 2D, although Eph family
proteins have been reported to be expressed in MCF-7 cells in
several studies.77,78 Fox and Kandpal also demonstrated that
other Eph family RNAs were expressed in MCF-7.79 These
results indicate that B4Mab-7 might not react with other Eph
family proteins. In the future study, we will check whether
B4Mab-7 could crossreact with other Eph family proteins one
by one using flow cytometry.

Many anti-EphB4 mAbs are now commercially available,
as shown in Supplementary Table S1. As listed, anti-EphB4
mAbs are usually applicable for only one or two experimental
techniques. Therefore, B4Mab-7 is the first anti-EphB4 mAb,
which is useful for flow cytometry, Western blot, and IHC.
B4Mab-7 was developed using the CBIS method, whereas
almost all mAbs were developed using immunization of re-
combinant proteins or peptides; therefore, the CBIS method
using EphB4-overexpressed cell lines, as in this study, might
be the best way to obtain useful anti-EphB4 mAbs. The CBIS
method could be advantageous for the development of mAbs
to the other Eph receptors.

Although many mAbs against anti-Eph receptors, such as
anti-EphA2 mAbs,80–94 anti-EphA3 mAbs,95–102 anti-
EphA10 mAbs,103 anti-EphB2 mAbs,104 and anti-EphB4
mAbs,105,106 have been developed, almost all mAbs have not
been used clinically,107 excluding only a few anti-Eph re-
ceptor mAbs.92,93,98 1C1 was a promising anti-EphA2 mAb
that showed agonist activity and caused phosphorylation and

internalization of EphA2.90 Since 1C1 itself showed no an-
titumor effect, MEDI-547, an antibody-drug conjugate
(ADC) composed of the cytotoxic drug auristatin (toxin)
linked to 1C1, was created.90 MEDI-547 inhibited tumor
growth and metastasis in vivo. Although MEDI-547 was
moved to phase I clinical study, it was terminated due to
serious side effects such as treatment-related bleeding, co-
agulation events, and elevated liver enzymes at the starting
dose in 3/6 patients.93

IIIA4/KB004/ifabotuzumab is an anti-EphA3 mAb cur-
rently in development for the treatment of glioblastoma
multiforme.102 The phase I study of IIIA4 has been com-
pleted and the safety has been confirmed.108 Interestingly, the
immunogen for IIIA4 uses LK63 human pre-B acute

FIG. 4. Western blot analysis using B4Mab-7. Cell lysates
(10 mg) were electrophoresed, and proteins were transferred
onto PVDF membranes. After blocking, membranes were
incubated with 1 mg/mL of B4Mab-7 (A) or 1mg/mL of an
anti-IDH1 mAb (clone: RcMab-1) (B). The membranes
were then incubated with peroxidase-conjugated anti-mouse
immunoglobulins and rat immunoglobulins, respectively.
IDH1, isocitrate dehydrogenase 1; PVDF, polyvinylidene
difluoride.

FIG. 5. Immunohistochemical analysis by B4Mab-7 for
breast cancers. After antigen retrieval using EnVision FLEX
Target Retrieval Solution High pH, tissue arrays were incu-
bated with 10mg/mL of primary B4Mab-7 for 1 hour at room
temperature, followed by treatment with Envision+ kit for 30
minutes. The color was developed using 3,3-diaminobenzidine
tetrahydrochloride for 2 minutes, and sections were then
counterstained with hematoxylin. (A, D) The 3+ staining
pattern (case 1), (B, E) The buffer control (case 1), (C, F) The
H&E staining (case 1). (G, J) The 2+ staining pattern (case 2),
(H, K) The buffer control (case 2), (I, L) The H&E staining
(case 2), (M, P) The negative staining pattern (case 3), (N, Q)
The buffer control (case 3), (O, R) The H&E staining (case 3).
Scale bar = 100mm. H&E, hematoxylin and eosin.
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Table 1. Results of B4Mab-7 Immunostaining in 63 Patients with Breast Cancers

No. Sex Age Organ Pathology diagnosis Differentiation TNM B4Mab-7

1 F 44 Breast Invasive ductal carcinoma Moderately T2N2M1 2+
2 F 58 Breast Medullary carcinoma Moderately T2N2M1 3+
3 F 40 Breast Invasive ductal carcinoma Moderately T2N1M0 1+
4 F 52 Breast Invasive ductal carcinoma Moderately T2N2M1 0
5 F 60 Breast Invasive ductal carcinoma Moderately T2N1M1 1+
6 F 57 Breast Invasive ductal carcinoma Moderately T2N0M0 3+
7 F 48 Breast Invasive ductal carcinoma Moderately T2N0M0 2+
8 F 66 Breast Invasive ductal carcinoma Moderately T2N0M0 0
9 F 58 Breast Adenocarcinoma Moderately T2N2M1 0

10 F 63 Breast Invasive ductal carcinoma Moderately T2N0M0 1+
11 F 32 Breast Invasive ductal carcinoma Moderately T2N0M0 1+
12 F 59 Breast Invasive lobular carcinoma Well T2N2M0 0
13 F 44 Breast Invasive lobular carcinoma Well T2N2M0 0
14 F 60 Breast Invasive lobular carcinoma Moderately T2N1M0 1+
15 F 44 Breast Invasive ductal carcinoma Moderately T2N2M0 3+
16 F 82 Breast Invasive ductal carcinoma Moderately T2N1M1 1+
17 F 58 Breast Adenocarcinoma Moderately T2N1M1 2+
18 F 57 Breast Invasive ductal carcinoma Poorly T3N3M0 1+
19 F 41 Breast Invasive ductal carcinoma Moderately T2N1M0 3+
20 F 44 Breast Invasive ductal carcinoma Moderately T2N2M0 0
21 F 78 Breast Invasive ductal carcinoma Moderately T2N1M0 1+
22 F 60 Breast Invasive ductal carcinoma Moderately T2N0M0 1+
23 F / Breast Invasive ductal carcinoma Moderately T2N1M1 1+
24 F 46 Breast Invasive ductal carcinoma Moderately T2N3M1 0
25 F 41 Breast Invasive ductal carcinoma Moderately T2N2M0 0
26 F 59 Breast Invasive ductal carcinoma Poorly T2N0M0 1+
27 F 45 Breast Invasive ductal carcinoma Poorly T2N0M0 0
28 F 43 Breast Invasive ductal carcinoma N/A T2N1M1 0
29 F 26 Breast Fibroadenoma N/A T1N0M0 2+
30 F 40 Breast Invasive ductal carcinoma N/A T1N0M0 0
31 F 38 Breast Fibroadenoma N/A T2N0M0 1+
32 F 51 Breast Invasive ductal carcinoma Moderately T2N2M0 0
33 F 45 Breast Invasive ductal carcinoma Poorly T2N0M0 1+
34 F 45 Breast Invasive ductal carcinoma Poorly T2N1M0 2+
35 F 47 Breast Invasive ductal carcinoma Moderately T2N1M0 0
36 F 55 Breast Invasive ductal carcinoma Moderately T2N3M1 2+
37 F 58 Breast Invasive ductal carcinoma Moderately T3N3M0 1+
38 F 47 Breast Invasive ductal carcinoma Moderately T2N0M0 3+
39 F 38 Breast Invasive ductal carcinoma Poorly T2N0M0 1+
40 F 40 Breast Invasive ductal carcinoma Poorly T2N0M0 2+
41 F 57 Breast Invasive ductal carcinoma Poorly T2N0M0 0
42 F 42 Breast Invasive ductal carcinoma Moderately T2N0M0 2+
43 F 60 Breast Invasive ductal carcinoma Moderately T2N0M0 2+
44 F 58 Breast Invasive ductal carcinoma Moderately T2N0M0 0
45 F 41 Breast Invasive ductal carcinoma Moderately T2N0M0 0
46 F 50 Breast Invasive ductal carcinoma Moderately T2N0M0 1+
47 F 60 Breast Invasive ductal carcinoma Moderately T2N2M1 0
48 F 53 Breast Invasive ductal carcinoma Moderately T2N0M0 3+
49 F 65 Breast Invasive ductal carcinoma Moderately T2N0M0 0
50 F 43 Breast Invasive ductal carcinoma Moderately T2N0M0 2+
51 F 57 Breast Invasive ductal carcinoma Moderately T2N0M0 2+
52 F 37 Breast Invasive ductal carcinoma Moderately T2N0M0 1+
53 F 50 Breast Invasive ductal carcinoma Moderately T2N3M0 0
54 F 48 Breast Invasive ductal carcinoma Poorly T2N1M0 0
55 F 50 Breast Invasive ductal carcinoma Moderately T2N0M0 1+
56 F 53 Breast Invasive ductal carcinoma Moderately T2N0M0 3+
57 F 49 Breast Invasive ductal carcinoma Moderately T2N0M0 2+
58 F 65 Breast Invasive ductal carcinoma Moderately T2N1M0 0
59 F 43 Breast Invasive ductal carcinoma Moderately T2N0M0 2+
60 F 58 Breast Invasive ductal carcinoma Moderately T2N0M0 0
61 F 48 Breast Invasive ductal carcinoma Moderately T2N0M0 1+
62 F / Breast Invasive ductal carcinoma Moderately TxNxMx 2+
63 F / Breast Invasive ductal carcinoma Moderately TxNxMx 1+
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lymphoblastic leukemia cells,109 and it is the only anti-
EphA3 mAb that is adaptable to flow cytometry, Western
blot, and IHC like B4Mab-7.109 This fact supports the suit-
ability of immunization using cell lines for the development
of useful anti-Eph receptor mAbs.

Because Eph receptors are expressed in normal tissues and
have important physiological functions, targeting them with
conventional antibody drugs has been difficult. Therefore,
recently, naked antibodies have been applied to chimeric
antigen receptor-T cell therapy,110,111 ADC,90,91,102,112 bis-
pecific T cell engager,103,113 bispecific antibody,114,115 and
liposomes,116 to target Eph receptors. Bispecific antibodies
against EphA2/EphA3 reduced the clonogenicity of recurrent
glioblastoma in vitro and the tumorigenic potential of xeno-
graft recurrent glioblastoma in vivo.115

In conclusion, we established an anti-EphB4 mAb,
B4Mab-7, which is applicable for flow cytometry, Western
blot, and IHC. In future studies, the heavy chain subclass of
B4Mab-7 should be modified from IgG1 to IgG2a to enhance
effector function (antibody-dependent cellular cytotoxicity
and complement-dependent cytotoxicity) and its antitumor
effect on breast cancer in vitro and in vivo should be inves-
tigated.
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