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Abstract
The chemokine receptors possess seven transmembrane helices connected by an 
extracellular N‐terminal region, three extracellular loops (ECL1–3), three intracellular 
loops, and an intracellular C‐terminal region. Specific monoclonal antibodies (mAbs) 
against chemokine receptors for flow cytometry have been developed using Cell-
Based Immunization and Screening, and the N-terminal peptide immunization 
methods. However, there are few reports on the establishment of anti-chemokine 
receptor mAbs through immunization with ECL peptides. Here, an anti-mouse C–C 
chemokine receptor type 7 (mCCR7) mAb, C7Mab-2 (rat immunoglobulin G2b, kappa), 
was established through immunization with the ECL3 peptide. C7Mab-2 demonstrated 
reactivity to mCCR7-overexpressed Chinese hamster ovary-K1 (CHO/mCCR7) cells in 
flow cytometry, which was inhibited by the ECL3 peptide. C7Mab-2 did not show 
cross-reactivity with other mouse CC, CXC, CX3C, and XC chemokine receptors. The 
dissociation constant value of C7Mab-2 was determined to be 2.8 × 10−9 M for CHO/
mCCR7 cells. Furthermore, C7Mab-2 detected mCCR7 in immunohistochemistry. This 
strategy could accelerate the development of novel chemokine receptor mAbs with 
high affinity and specificity.

Keywords: Mouse C–C chemokine receptor type 7; Monoclonal antibody; Extracellular 
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1. Introduction
Chemotactic trafficking is regulated by G protein-coupled receptors (GPCRs) on immune 
cells.1 With four conserved cysteine residues forming two disulfide bonds, chemokines 
are cytokines that guide immune cells to the appropriate locations. They can be classified 
into four subfamilies: CC, CXC, XC, and CX3C, based on the number and position of 
cysteine residues at the N-terminus.2 The biological effects of chemokines are mediated 
through a family of GPCRs. The chemokine receptors possess seven transmembrane 
helices connected by an extracellular N‐terminal region, three extracellular loops 
(ECL1–3), three intracellular loops, and an intracellular C‐terminal region.3 Several 
disulfide bonds connect the N‐terminus to ECL3 and ECL1 to ECL2.4 The binding of 
chemokines to their specific receptors induces conformational changes and activates the 
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chemokine signaling pathways to regulate the migration, 
integration, adhesion, and proliferation of immune cells.5,6

C–C chemokine receptor 7 (CCR7) is expressed on naïve 
T and B cells, natural killer cells, regulatory T cells, central 
memory T cells, dendritic cells, and tumor cells.7 C–C 
motif chemokine ligands (CCL) 19 and 21 are high-affinity 
CCR7 ligands that promote the migration of CCR7-positive 
cells to secondary lymphoid organs, including the thymus, 
spleen, and lymph nodes.8-12 Genome-wide association 
studies have revealed a relationship between CCL21/
CCR7 and disease severity in patients with systemic lupus 
erythematosus, Sjögren’s syndrome, rheumatoid arthritis, 
or asthma.7 Disrupting the CCL21/CCR7 interaction with 
monoclonal antibodies (mAbs) or inhibitors suppresses 
the migration of CCR7-positive cells to inflammatory sites, 
thereby inhibiting disease progression.

Metastasis to the lymph node is an important predictive 
factor for patients with cancer.13 The elevated expression of 
CCR7 is associated with lymph node metastasis in many 
solid tumors, including esophageal,14 gastric,15 colorectal,16 
pancreatic,17 thyroid,18 oral,19 and non-melanoma skin 
cancers.20 CCR7, but not others, specifically drives 
cancer cell homing to lymph nodes and other secondary 
lymphoid organs, where the ligands CCL19 and CCL21 
are constitutively expressed by stroma cells.21 Therefore, 
developing specific mAbs against mouse CCR7 (mCCR7) 
is essential to targeting the CCR7-expressing cells in 
preclinical mouse disease models.

Specific mAbs against various chemokine receptors 
have been developed, including mouse CXCR1 
(mCXCR1; clone Cx1Mab-1),22 mouse CXCR3 (mCXCR3; 
clone Cx3Mab-4),23 mouse CXCR4 (mCXCR4; clone 
Cx4Mab-1),24 mouse CCR1 (mCCR1; clone C1Mab-6),25 
mouse CCR3 (mCCR3; clones C3Mab-2, C3Mab-3, and 
C3Mab-4),26 mouse CCR5 (mCCR5; clone C5Mab-2),27 
mCCR7 (clone C7Mab-7),28 and mouse CCR8 (mCCR8; 
clones C8Mab-1, C8Mab-2, and C8Mab-3)29 using the 
Cell-Based Immunization and Screening (CBIS) method. 
This method involves immunization with antigen-
overexpressed cells and flow cytometry-based high-
throughput screening. Furthermore, specific mAbs 
against mouse CCR2 (mCCR2; clone C2Mab-6),30 mCCR3 
(clones C3Mab-6 and C3Mab-7),31 mouse CCR4 (mCCR4; 
clone C4Mab-1),32 mouse CCR6 (mCCR6; clone C6Mab-
13),33 mouse CCR9 (mCCR9; clone C9Mab-24),34 mouse 
CXCR5 (mCXCR5; clone Cx5Mab-3),35 and mouse CXCR6 
(mCXCR6; clone Cx6Mab-1)36 have also been established 
using the N-terminal peptide immunization. In contrast, 
there are few reports on the establishment of anti-
chemokine receptor mAbs by immunization with ECL 
peptides.

2. Materials and methods
2.1. Cell lines

Mouse myeloma cell line P3X63Ag8.U1 (P3U1) and 
Chinese hamster ovary (CHO)-K1 cells were obtained from 
the American Type Culture Collection (USA). The mCCR7-
overexpressed CHO-K1 (CHO/mCCR7) cell line was 
previously established.28 Stable transfectants of the following 
chemokine receptors were previously established:35 CHO/
mCCR1, CHO/mCCR2, CHO/mCCR3, CHO/PA-mCCR4, 
CHO/mCCR5, CHO/PA-mCCR6, CHO/mCCR8, CHO/
mCCR9, CHO/PA-mCCR10, CHO/mCXCR1, CHO/
mCXCR2, CHO/mCXCR3, CHO/mCXCR4, CHO/
mCXCR5, CHO/mCXCR6, CHO/mCX3CR1, and 
CHO/mXCR1. These cells were maintained as described 
previously.35

2.2. Peptides

Eurofins Genomics KK (Japan) synthesized partial 
sequences of the ECLs of mCCR7 as follows: 
mCCR7-1 (SEAKSWIFGVYLC), mCCR7-2 
(ELLYSGLQKNSGEDTLRC), and mCCR7-3 
(CETSKQLNIAYDVTYS). Subsequently, the keyhole limpet 
hemocyanin (KLH) was conjugated to the N-terminus of 
mCCR7-3 or the C-terminus of mCCR7-1 and mCCR7-2.

2.3. Hybridoma production

The Animal Care and Use Committee of Tohoku University 
approved the animal study (Permit number: 2022MdA-
001). Three 6-week-old female Sprague–Dawley (SD) rats 
(CLEA Japan, Japan) were intraperitoneally immunized 
with 100  µg of the KLH-conjugated mCCR7 peptides 
mixed with 2% Alhydrogel adjuvant (InvivoGen, USA). 
Hybridomas were generated as described previously.36

2.4. Enzyme-linked immunosorbent assay

The synthesized mCCR7 peptides (1  µg/mL) were 
immobilized on immunoplates. After blocking with 
phosphate-buffered saline (PBS) containing 0.05% Tween-
20 (Nacalai Tesque, Inc., Japan) and 1% bovine serum 
albumin (BSA), the plates were treated with hybridoma 
supernatants. Enzymatic reactions were performed using 
the ELISA POD Substrate TMB Kit (Nacalai Tesque, Inc., 
Japan). Optical density was detected at 655 nm using an 
iMark microplate reader (Bio-Rad Laboratories, Inc., 
Berkeley, CA).36

2.5. Flow cytometry

Cells were incubated with C7Mab-2 in a blocking buffer 
(0.1% BSA in PBS) at 4°C for 30  min. For the peptide 
inhibition assay, C7Mab-2  (2 μg/mL) was pre-incubated 
with dimethyl sulfoxide (DMSO) or 1 μg/mL mCCR7-3 
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peptide for 15 min, and then incubated with the cells for 
30 min at 4°C. Data were collected using the SA3800 Cell 
Analyzer (Sony Biotechnology, Japan) and analyzed as 
described previously.36

2.6. Determination of dissociation constant

Cells were treated with C7Mab-2 (0.006 to 100 μg/mL). The 
cells were then incubated with Alexa Fluor 488-conjugated 
anti-rat immunoglobulin G (IgG) at 4°C for 30 min. The 
dissociation constant (KD) of C7Mab-2 for CHO/mCCR7 
was determined using GraphPad PRISM 6 (USA), as 
described previously.36

2.7. Immunohistochemical analysis

The preparation of cell sections and antigen retrieval were 
performed as described previously.28 After blocking, the 
sections were treated with C7Mab-2 (20 μg/mL) for 1 h. For 
the peptide inhibition assay, C7Mab-2 (20 μg/mL) was pre-
incubated with 2 μg/mL of the mCCR7-3 peptide or DMSO 
for 15 min and then incubated with the cell blocks for 1. 
Color development was achieved as described previously.28

3. Results

3.1. Development of an anti-mouse CCR7 
monoclonal antibody, C7Mab-2, by immunization 
with three extracellular loop peptides

Three SD rats were immunized with the KLH-conjugated 
mCCR7 peptides, respectively (Figure  1A). Hybridomas 
were produced by fusion with P3U1  cells (Figure  1B). 
Then, positive wells for each unconjugated mCCR7 peptide 
were selected using enzyme-linked immunosorbent assay 
(ELISA) (Figure  1C). The ELISA screening identified 11 
of 1,534 wells for mCCR7-1  (0.7%), 78 of 1,534 wells for 
mCCR7-2 (5.1%), and 93 of 1,438 wells for mCCR7-3 (6.5%) 
that strongly reacted with the respective mCCR7 peptide. 
Second screenings were subsequently performed using 
flow cytometry (Figure 1C). Among the 93 ELISA-positive 
wells for mCCR7-3, 11 wells showed reactivity with CHO/
mCCR7 cells but not with CHO-K1 cells. No flow cytometry-
positive wells were obtained from hybridomas derived 
from mCCR7-1–KLH-  and mCCR7-2–KLH-immunized 
rat. The anti-mCCR7 mAb-producing hybridomas derived 
from KLH-mCCR7-3-immunized rat were further cloned 
by limiting dilution, and C7Mab-2 (rat IgG2b, kappa) was 
finally established (Figure 1D).

3.2. Flow cytometry using C7Mab-2

Flow cytometry was performed using C7Mab-2 against 
CHO/mCCR7  cells and CHO-K1  cells. C7Mab-2 
recognized CHO/mCCR7 cells at concentrations ranging 
from 0.01 to 10 μg/mL, whereas CHO-K1 cells were not 

recognized even at 10 μg/mL (Figure  2A). A  peptide-
blocking assay demonstrated that C7Mab-2 reacted with 
CHO/mCCR7  cells, and this reactivity was completely 
neutralized by the mCCR7-3 peptide (Figure 2B).

3.3. Reactivity of C7Mab-2 to various chemokine 
receptor-expressing CHO-K1 cells

Anti-mouse CC, CXC, CX3C, and XC chemokine receptor 
mAbs have previously been established and evaluated 
using CHO-K1 cells expressing these receptors.35 Among 
18 CHO-K1 cells expressing mouse CC, CXC, CX3C, and 
XC chemokine receptors, C7Mab-2 recognized only CHO/
mCCR7 cells, but not others (Figure 3).

Figure 1. Schematic representation of anti-mCCR7 mAb production. (A) The 
KLH-conjugated mCCR7 ECL peptides (mCCR7-1, mCCR7-2, and mCCR7-3) 
were immunized into Sprague–Dawley rats. (B) The spleen cells were fused 
with P3U1 cells. (C) To select anti-mCCR7 mAb-producing hybridomas, the 
supernatants were screened by ELISA and flow cytometry using CHO-K1 cells 
and CHO/mCCR7  cells. (D) The anti-mCCR7 mAb-producing hybridomas 
from KLH-mCCR7-3-immunized rat were further cloned by limiting dilution, 
and C7Mab-2 (rat IgG2b, kappa) was finally established.
Abbreviations: CHO-K1: Chinese hamster ovary-K1; ECL: Extracellular 
loop; ELISA: Enzyme-linked immunosorbent assay; KLH: Keyhole 
limpet hemocyanin; mAb: Monoclonal antibody; mCCR7: Mouse C–C 
chemokine receptor type 7.
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3.4. Dissociation constant of C7Mab-2

The binding affinity of C7Mab-2 was evaluated using flow 
cytometry. The KD of C7Mab-2 for CHO/mCCR7 cells was 
2.8 ± 0.3 × 10−9 M (Figure 4).

3.5. Immunohistochemistry using C7Mab-2

To examine the suitability of C7Mab-2 for 
immunohistochemistry, the sections of CHO-K1  cells 
and CHO/mCCR7  cells were stained with C7Mab-2. The 
membranous and cytoplasmic staining were observed in 
CHO/mCCR7 cells (Figure 5A), but not in CHO-K1 cells 
(Figure  5B). Furthermore, this reactivity was completely 
neutralized by the mCCR7-3 peptide (Figure 5C and D).

4. Discussion
This study established an anti-mCCR7 mAb, C7Mab-2, by 
immunizing with the ECL3 peptide. C7Mab-2 can be applied 
to flow cytometry (Figure 2) and immunohistochemistry 

(Figure 5) to detect mCCR7-positive cells. The reactivity 
(Figure 2) and affinity (Figure 4) of C7Mab-2 are similar to 
another anti-mCCR7 mAb, C7Mab-7, which was established 
through the CBIS method.28 It is critical to investigate 
whether C7Mab-2 can detect endogenous mCCR7 using 
cells from secondary lymphoid organs, including the lymph 
node, thymus, and spleen. Furthermore, this study also 
confirmed that C7Mab-2 recognizes mCCR7, but not other 
CC, CXC, CX3C, and XC chemokine receptors (Figure 3). 
The ECL1–3 peptides were immunized, and the ELISA-
positive wells in hybridomas were obtained from each 
peptide-immunized rat. However, it was unable to obtain 
flow cytometry-positive wells in hybridomas derived 
from ECL1 and ECL2 peptide-immunized rats. Among 
hybridomas from the ECL3 peptide-immunized rat, only 
10% of ELISA-positive supernatants recognized CHO/
mCCR7 in flow cytometry, indicating that conformational 
changes and modifications, including glycosylation37 or 
disulfide bond formation,4 would restrict the recognition 

Figure 2. Flow cytometry analysis of C7Mab-2 against CHO/mCCR7 cells and CHO-K1 cells. (A and B) CHO/mCCR7 cells (A) and CHO-K1 cells (B) 
were treated with 0.01, 0.1, 1, and 10 µg/mL of C7Mab-2 (red line). The mAb-treated cells were further incubated with Alexa Fluor 488-conjugated anti-rat 
IgG. The black line represents the negative control (blocking buffer). The dose-dependent reactivities of C7Mab-2 to CHO/mCCR7 cells were investigated 
in at least three independent experiments. (C) Peptide-blocking assay using C7Mab-2 with mCCR7-3 peptide. C7Mab-2 (2 µg/mL) with mCCR7-3 (1 μg/
mL, red line) or control (1% DMSO in blocking buffer, red line) was reacted with CHO/mCCR7 for 30 min at 4°C, followed by treatment with Alexa Fluor 
488-conjugated anti-rat IgG. The black line represents the negative control (blocking buffer).
Abbreviations: CHO-K1: Chinese hamster ovary-K1; DMSO: Dimethyl sulfoxide; IgG: Immunoglobulin G; mCCR7: Mouse C–C chemokine receptor type 7.
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of mAbs. Future investigation should involve the 
determination of the critical epitope of C7Mab-2, which 
may help the understanding of the recognition mechanism 
of mCCR7. Notably, the Cx6Mab-1 epitope was previously 
identified using 1× and 2× alanine scanning methods.38

Structural information on chemokine receptors is 
required to develop drugs that fulfill the requirements. 
Much effort has been made to determine the structures 
in complex with either synthetic ligands39-41 or native 
chemokines42,43 by X-ray crystallography. The cryo-
electron microscopy (cryo-EM) has reportedly determined 
the structures of several chemokine receptor-ligand 
complexes.44-47 Although the structure of the CCR7–ligand 
complex has not been determined, the crystal structure 
of CCR7 with Cmp2105, an intracellular allosteric CCR7 
receptor antagonist, was previously determined.48 Recently, 

the structures of chemokine receptor–mAb complexes 
have been determined by means of the cryo-EM, providing 
a detailed structural and mechanistic framework of 
chemokine receptor activation and inhibition.49 Since 
C7Mab-2 is known to recognize ECL3 of mCCR7, it could 
help the structural analysis of mCCR7 in future studies.

Several in vitro and in vivo preclinical tumor models 
have demonstrated that increased CCR7 expression 
promotes tumor growth and metastasis, whereas reduced 
CCR7 expression suppresses these processes.50 For 
example, in an orthotopic model, mCCR7-overexpressing 
mouse mammary tumor cells (PyVmT) demonstrated 
enhanced metastasis to the lymph nodes. In contrast, 
the control cells did not migrate to the lymph nodes 
but metastasized to the lungs. Additionally, mCCR7 
overexpression significantly increased tumor growth in 

Figure 3. Flow cytometry analysis of C7Mab-2 in CC, CXC, CX3C, and XC chemokine receptor-expressing CHO-K1 cells. Eighteen mouse CC, CXC, 
CX3C, and XC chemokine receptor-expressing CHO-K1 cells were treated with 1 µg/mL of C7Mab-2 (red line) or control blocking buffer (black line), 
followed by treatment with Alexa fluor 488-conjugated anti-rat IgG. Fluorescence data were collected using the SA3800 cell analyzer. Each receptor 
expression was previously confirmed by flow cytometry.
Abbreviations: CHO-K1: Chinese hamster ovary-K1; IgG: Immunoglobulin G; mCCR: Mouse C–C chemokine receptor; mCXCR: Mouse C–X–C motif 
chemokine receptor; mXCR: Mouse X–C motif chemokine receptor.
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experiments and is expected to provide proof of concept 
in preclinical studies.
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Figure 4. Binding affinity of C7Mab-2. CHO/mCCR7 cells were incubated 
with serially diluted C7Mab-2, followed by treatment with Alexa Fluor 
488-conjugated anti-rat IgG. Fluorescence data were collected using the 
SA3800 cell analyzer, and the KD was calculated using GraphPad PRISM 
6. The representative results were shown. Three independent experiments 
were conducted to determine the average KD (mean ± standard deviation).
Abbreviations: CHO: Chinese hamster ovary; IgG: Immunoglobulin G; KD: 
Dissociation constant; mCCR7: Mouse C–C chemokine receptor type 7.

Figure 5. Immunohistochemistry of paraffin-embedded cell sections of 
CHO/mCCR7 cells and CHO-K1 cells using C7Mab-2. (A and B) Sections 
of CHO-K1  cells (A) and CHO/mCCR7  cells (B) were treated with 
20 μg/mL of C7Mab-2, followed by treatment with Histofine Simple Stain 
Mouse MAX PO (Rat). (C and D) Peptide-blocking assay using C7Mab-2 
with mCCR7-3 peptide. C7Mab-2 (20 µg/mL) with mCCR7-3 (2 μg/mL, 
C) or control (1% DMSO in blocking buffer, D) were reacted with the 
sections of CHO/mCCR7  cells, followed by treatment with Histofine 
Simple Stain Mouse MAX PO (rat). Color was developed using DAB, and 
counterstaining was performed using hematoxylin. Scale bar: 100 μm. 
Magnification: x200.
Abbreviations: CHO: Chinese hamster ovary; DAB: 3,3’-diaminobenzidine 
tetrahydrochloride; DMSO: Dimethyl sulfoxide; mCCR7: Mouse C–C 
chemokine receptor type 7.

PyVmT cells both in vitro and in vivo compared to the 
control.51 Furthermore, in a mouse melanoma model, 
mCCR7-overexpressed B16 melanoma cells exhibited a 
significantly higher rate of lymph node metastasis than 
control cells, although the primary tumor size remained 
unchanged.52 To target the mCCR7-positive tumors 
in vivo, C7Mab-2 (rat IgG2b) should be converted to 
mouse IgG2a mAb. Through the determination of heavy-
chain variable domain and light-chain variable domain 
sequences of C7Mab-2, a large amount of recombinant 
mAbs can be generated for use in preclinical studies.

In a syngeneic mouse model of oral cancers, the growth 
of tumors was significantly decreased in mCCR7-knockout 
(KO) mice.53 Single-cell RNA sequencing analysis showed 
that the M2 macrophage proportion in the KO group 
was lower compared to the control.53 mCCR7 stimulates 
the polarization of M2 macrophages, which promotes 
the migration, invasion, and proliferation of tumor 
cells.53 Therefore, the depletion of mCCR7-expressing 
cells by anti-mCCR7 mAbs, such as class-switched and 
defucosylated mouse IgG2a-type  C7Mab-2, could help 
investigate the effect of mCCR7-expressing cell depletion 
on tumor growth.

5. Conclusion
An anti-mCCR7 mAb, C7Mab-2, was established by 
immunization with the ECL3 peptide. C7Mab-2 can 
be used in flow cytometry and immunohistochemistry 
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