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Abstract
C-C motif chemokine receptor-8 (CCR8) belongs to class  A of G protein-coupled 
receptors. CCR8 interacts with the specific chemokine ligand CCL1/I-309 in humans, 
which is produced by various cells, including tumor-associated macrophages and 
regulatory T cells (Treg). CCR8 is highly expressed on Treg and T-helper 2  cells 
recruited to the inflammation site and is implicated in allergy, asthma, and cancer 
progression. CCR8+Treg cells have been suggested an important regulator in the 
immunosuppressive tumor microenvironment. Therefore, it has been proposed for 
use in the development of sensitive monoclonal antibodies targeting CCR8. This 
study developed a specific mAb for human CCR8 (hCCR8), which is useful for flow 
cytometry by employing the Cell-Based Immunization and Screening (CBIS) method. 
The established anti-hCCR8 mAb (C8Mab-21; mouse IgM, kappa) demonstrated 
reactivity with hCCR8-overexpressed Chinese hamster ovary-K1 (CHO/hCCR8) 
cells, TALL-1 (human adult acute T-lymphoblastic leukemia), CCRF-HSB2 (human 
T-lymphoblastic leukemia), and natural killer cells expressing endogenous hCCR8, as 
confirmed by flow cytometry. Furthermore, EC50 values of C8Mab-21 for CHO/hCCR8 
and TALL-1 were determined as 6.5 × 10−8 M and 2.0 × 10−8 M, respectively. C8Mab-
21, established by the CBIS method, provides a useful tool for analyzing the hCCR8-
related biological response using flow cytometry.
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1. Introduction
Targeting immune checkpoint has become an effective and powerful strategy for 
cancer therapy.1-4 In particular, the development of antibody drugs targeting immune 
checkpoint molecules, such as programmed-cell death-1 (PD-1), cytotoxic T 
lymphocyte antigen 4 (CTLA-4), and PD-1 ligand 1 (PD-L1), has achieved remarkable 
therapeutic results.5-7 PD-1 inhibits the excessive activation of conventional T 
cells by suppressing costimulatory signaling and renders them dysfunctional or 
exhausted.8 PD-1 and CTLA-4 are also expressed in regulatory T cells (Treg), one 
of the immunosuppresses in the tumor microenvironment (TME).9 Inhibition of 
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these molecules could potentiate the activation and 
immunosuppressive function of Treg.10-12

Treg is defined as CD4+T cell that expresses CD25 
and FOXP3, playing a role in maintaining self-tolerance 
to prevent excessive immune responses and autoimmune 
diseases.13,14 Treg suppresses the effector functions of 
T cells through the secretion of immunosuppressive 
cytokines, such as interleukin-10 (IL-10), transforming 
growth factor-β, and cytotoxic granzyme/perforin.14-18 
Intratumoral Treg suppresses antitumor T cell responses 
and thus resists the effects of immune checkpoint inhibitor 
therapy.19,20 Antibodies against T cell immunoreceptors 
with Ig and ITIM domains (TIGIT), one of the immune 
checkpoint molecules, have shown to improve the 
effectiveness of PD-L1 antibodies by suppressing Treg.21 
Therefore, the development of immunotherapy targeting 
Treg is expected.11,22

Intratumoral Treg expresses high levels of C-C 
motif chemokine receptor-8 (CCR8).4 In addition, 
CCR8-expressing Tregs exhibit increased expression of 
CD25 and FOXP3 compared to CCR8-negative Tregs,23 
indicating their potent immunosuppressive functions. 
The CCR8-expressing Treg is known to be correlated with 
poor prognosis in some cancer patients.24,25 Thus, CCR8 
is emerging as an attractive target for the next cancer 
immunotherapy.26 Several anti-CCR8 drugs, including 
S-531011,27 IPG7236,28 and SRF11429 are undergoing 
clinical trials.

CCR8 is one of the seven transmembrane-spanning 
G protein-coupled receptors.4 Human CCR8 (hCCR8) 
is known to bind to five C-C chemokine ligands (CCLs): 
CCL1/I-309, CCL4, CCL16, CCL17, and CCL18.30-32 CCR8 
is upregulated not only in Treg but also in various cancers, 
including breast, non-small cell lung (NSCLC), bladder, 
and colorectal cancer.24,25 In bladder cancer, CCR8 mediates 
cell migration, invasion, and epithelial-mesenchymal 
transition by interacting with CCL18.33 In addition, CCR8 
and its specific ligand CCL1/I-309 regulate the immune 
system, which mediates the progression of diseases such as 
cancers by promoting migration and inhibiting apoptosis 
in Treg and lymphomas.34,35 Therefore, CCR8-targeting 
antibodies will contribute to the elucidation of pathological 
mechanisms, diagnosis, and therapy.27,36

Using the Cell-Based Immunization and Screening 
(CBIS) method, we previously developed numerous 
monoclonal antibodies (mAbs) against chemokine 
receptors, including mouse CCR3,37 mouse CCR8,38 
human CCR9,39 and mouse C-X-C chemokine receptor 
type 4 (CXCR4).40 In this study, we successfully developed 
an anti-hCCR8 mAb using the CBIS method, which is 
applicable to flow cytometry.

2. Materials and methods
2.1. Cell lines

LN229, Chinese hamster ovary (CHO)-K1, and 
P3X63Ag8U.1 (P3U1) cells were obtained from the 
American Type Culture Collection (Manassas, VA, USA). 
TALL-1 and CCRF-HSB2  cells were obtained from the 
Japanese Collection of Research Bioresources Cell Bank 
(Osaka, Japan). The human natural killer (NK) cells 
(donor lot. 4022602, purity >70%) were purchased from 
Takara Bio (Shiga, Japan). pCMV6neo-myc-DDK vector 
with hCCR8 (Accession No.: NM_005201) was purchased 
from OriGene Technologies, Inc. (Rockville, MD, USA). 
The plasmid was transfected into cell lines using the 
Neon transfection system (Thermo Fisher Scientific, Inc., 
Waltham, MA, USA). Subsequently, LN229 and CHO-K1 
stably overexpressing hCCR8 with C-terminal myc-DDK 
tags (hereinafter described as LN229/hCCR8 and CHO/
hCCR8, respectively) were established using a cell sorter 
(SH800; Sony Corp., Tokyo, Japan), following cultivation 
in a medium containing 0.5 mg/mL G418 (Nacalai Tesque, 
Inc., Kyoto, Japan).

CHO-K1, P3U1, CHO/hCCR8, TALL-1, and CCRF-
HSB2  cells were cultured in a Roswell Park Memorial 
Institute (RPMI)-1640 medium (Nacalai Tesque, Inc., 
Kyoto, Japan) supplemented with 10% heat-inactivated 
fetal bovine serum (FBS, Thermo Fisher Scientific 
Inc., Waltham, MA, USA), 100 units/mL penicillin, 
100 μg/mL streptomycin, and 0.25 μg/mL amphotericin 
B (Nacalai Tesque, Inc., Kyoto, Japan). LN229 and 
LN229/hCCR8 were cultured in a Dulbecco’s Modified 
Eagle Medium (DMEM, Nacalai Tesque, Inc., Kyoto, 
Japan) supplemented with 10% heat-inactivated FBS 
(Thermo Fisher Scientific Inc., Waltham, MA, USA), 
100 units/mL penicillin, 100 μg/mL streptomycin, and 
0.25 μg/mL amphotericin B (Nacalai Tesque, Inc., Kyoto, 
Japan). All cells were cultured in a humidified incubator 
at 37°C with 5% CO2 and 95% air.

2.2. Antibodies

The anti-human CD198 (CCR8) mAb (clones S19017D 
and L263G8) were purchased from BioLegend (San Diego, 
CA, USA). The Alexa Fluor 488-conjugated anti-mouse 
Immunoglobulin (Ig)G was purchased from Cell Signaling 
Technology, Inc. (Danvers, MA, USA).

2.3. Hybridoma production

For developing anti-hCCR8 mAbs, two female 6-week-old 
BALB/c mice were immunized intraperitoneally with 1 × 
108 cells of LN229/hCCR8. The immunogen was harvested 
after brief exposure to 1 mM ethylenediaminetetraacetic 
acid (EDTA; Nacalai Tesque, Inc., Kyoto, Japan). Imject 
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Alum (Thermo Fisher Scientific Inc., Waltham, MA, 
USA) was used as an adjuvant for the first immunization. 
Subsequently, three additional weekly injections of 1 × 
108 cells of LN229/hCCR8 were administered without an 
adjuvant. A final booster immunization with 1 × 108 cells 
of LN229/hCCR8 was given intraperitoneally 2  days 
before harvesting splenocytes from the mice. Harvested 
splenocytes were then fused with P3U1  cells using 
polyethylene glycol 1500 (PEG1500; Roche Diagnostics, 
Indianapolis, IN, USA).

Hybridomas were cultured in RPMI-1640 medium 
supplemented as shown above and additional supplements 
included hypoxanthine, aminopterin, and thymidine (HAT; 
Thermo Fisher Scientific, Inc., Waltham, MA, USA), 5% 
Briclone (NICB, Dublin, Ireland), and 5 μg/mL of Plasmocin 
(InvivoGen, San Diego, CA, USA). The hybridoma 
supernatants were screened by flow cytometry using CHO/
hCCR8 and parental CHO-K1 cells. The cultured supernatant 
of C8Mab-21-producing hybridomas was filtrated and 
purified using Capto L (Cytiva, Tokyo, Japan).

2.4. Flow cytometry

CHO-K1 and CHO/hCCR8 cells were harvested after brief 
exposure to 1 mM EDTA. Subsequently, CHO-K1, CHO/
hCCR8, TALL-1, and CCRF-HSB2 cells were washed with 
0.1% bovine serum albumin in phosphate-buffered saline 
and treated with primary mAbs for 30 min at 4°C. The cells 
were then treated with Alexa Fluor 488-conjugated anti-
mouse IgG (1:1000) following the collection of fluorescence 
data, using the SA3800 Cell Analyzer and SA3800 software 
ver. 2.05 (Sony Corp, Tokyo, Japan).

2.5. Determination of the EC50 by flow cytometry

CHO/hCCR8 and TALL-1 were suspended in 100 μL of 
serially diluted C8Mab-21  (100  μg/mL – 0.006  μg/mL), 
S19017D (10  μg/mL – 0.0006  μg/mL for CHO/hCCR8; 
10  μg/mL, 2.5  μg/mL – 0.0006  μg/mL for TALL-1), or 
L263G8  (10  μg/mL – 0.0006  μg/mL for CHO/hCCR8; 
0.625  μg/mL – 0.0006  μg/mL for TALL-1). Alexa Fluor 
488-conjugated anti-mouse IgG (1:200) was then added. 
Fluorescence data were subsequently collected using the BD 
FACSLyric (BD Biosciences, Franklin Lakes, NJ, USA), and 
EC50 values were calculated by fitting the binding isotherms 
into the built-in one-site binding model in GraphPad 
PRISM 6 (GraphPad Software, Inc., La Jolla, CA, USA).

3. Results
3.1. Establishment of anti-hCCR8 mAbs by the CBIS 
method

The CBIS method was employed using hCCR8-
overexpressing cells to develop anti-hCCR8 mAbs. Anti-

hCCR8 mAbs-producing hybridoma screening was 
conducted using flow cytometry (Figure 1). Two mice were 
intraperitoneally immunized with LN229/hCCR8  weekly 
for a total of 5  times. Subsequently, hybridomas were 
seeded into 96-well plates, after which flow cytometric 
analysis was used to select CHO/hCCR8-reactive and 
CHO-K1-non-reactive supernatants of hybridomas. From 
956 wells, only one (0.10%) yielded CHO/hCCR8-reactive 
supernatant. Finally, we established the clone C8Mab-21 
(mouse IgM, kappa) by limiting dilution and additional 
screening.

Figure 1. A schematic procedure of anti-hCCR8 monoclonal antibodies 
production. The procedure of the CBIS method for antibody development. 
LN229/hCCR8 cells were immunized into two mice via intraperitoneal 
injection (A). Spleen cells harvested from mice were fused with P3U1 
myeloma cells (B). The culture supernatants of hybridoma were screened 
by flow cytometry using CHO-K1 and CHO/hCCR8 (C). After limiting 
dilution of hybridomas and additional analysis, the C8Mab-21 clone was 
finally established (D).
Abbreviations: i.p.: Intraperitoneal; CHO: Chinese hamster ovary; CBIS: 
Cell-based immunization and screening; hCCR8: Human C-C motif 
chemokine receptor-8.

A

B

C

D
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3.2. Flow cytometric analysis

Flow cytometric analysis was conducted using purified 
C8Mab-21 (Figure S1) and commercially available anti-
human CD198 (CCR8) mAbs (clone S19017D and L263G8) 
against CHO-K1, CHO/hCCR8, TALL-1, CCRF-HSB2, 
and NK cells. The results showed that C8Mab-21, 
S19017D, and L263G8 recognized CHO/hCCR8 in a 
dose-dependent manner (Figure  2A). Neither C8Mab-21 
nor L263G8 reacted with parental CHO-K1 cells, even at 
a concentration of 20 μg/mL. However, S19017D showed 
slight reactivity with CHO-K1  cells at concentrations of 
20  μg/mL and 2  μg/mL (Figure  2B). For endogenously 
hCCR8-expressing cells, C8Mab-21 recognized TALL-1, 
CCRF-HSB2, and NK cells at concentrations of 2 μg/mL 
and 20 μg/mL (Figure 3). S19017D reacted with TALL-1 
and CCRF-HSB2 in a dose-dependent manner, even at a 
concentration of 0.02 μg/mL, but did not recognize NK cells, 
even at a concentration of 20 μg/mL (Figure 3). L263G8 
reacted with TALL-1 and CCRF-HSB2 at concentration as 
low as 0.02 μg/mL, and with NK cells at concentrations of 
2 μg/mL or higher (Figure 3). Thus, C8Mab-21 could detect 
both exogenously and endogenously expressed hCCR8 in 
its native conformation using flow cytometry.

3.3. Titration of anti-CCR-8 mAbs on hCCR8-
overexpressed and endogenously hCCR8-
expressing cell lines

The titration of C8Mab-21, S19017D, and L263G8 
was assessed with exogenously hCCR8-expressed 
CHO/hCCR8 using flow cytometry. The results showed 
that the EC50 values of C8Mab-21, S19017D, and L263G8 for 
CHO/hCCR8 are 6.5 × 10−8 M, 2.6 × 10−9 M, and 1.2 × 10−9 
M, respectively (Figure 4). The histogram of C8Mab-21 is 
shown in Figure S2. These results indicate that C8Mab-21 
possesses a moderate affinity for CHO/hCCR8 cells.

The titration of C8Mab-21, S19017D, and L263G8 
was analyzed with endogenously hCCR8-expressing 
TALL-1 using flow cytometry. The EC50 values of C8Mab-
21, S19017D, and L263G8 for TALL-1 are 2.0 × 10−8 M, 
4.6 × 10−10 M, and 7.8 × 10−11 M, respectively (Figure 5). 
These results showed that C8Mab-21 possesses a moderate 
affinity for endogenously expressed hCCR8 in TALL-1 
leukemia cells.

Further investigation was conducted to explore other 
applications, such as immunohistochemistry. However, 
hCCR8 could not be detected by immunohistochemistry 
using cell blocks of CHO/hCCR8 (Figure S3).

4. Discussion
Chemokine receptors are focused as targets for many 
diseases, including inflammatory disorders and cancers.41,42 

The receptors transmit signals to intracellular molecules 
regarding extracellular conditions and govern broad 
cellular dynamics, such as proliferation, homeostasis, 
migration, and motility of the cells.41,43 Although the 
therapeutic drugs including mAbs have been developed, 
significant challenges remain. These challenges include 
the complexity of the structure, the small area of epitope 
regions, and the difficulty in purifying these protein as 
immunogens.42,44

Unlike protein purifications, the preparation of 
antigens using the CBIS method is relatively simple. 
Furthermore, the CBIS method allows for the retention 
of the antigens’ structure, including modifications such as 
glycosylation and folding. We have successfully developed 
multiple mAbs using the CBIS method, targeting human 
epidermal growth factor receptor 1 (HER1; EGFR),45 
HER3,46 trophoblast cell surface antigen 2,47 CD44,48 and 
podoplanin.49 Furthermore, some of the mAbs developed 
by the CBIS method exhibited cancer specificity by 
recognizing unique cancer-specific epitopes.50,51 Therefore, 
the CBIS method is one of the efficient and useful tactics 
for generating diverse antibodies targeting membrane 
proteins. Further investigations are required to determine 
the epitope of C8Mab-21.

In the immunosuppressive TME, CD8+T cells are 
exhausted along with the induction of CCR8+Treg. The 
infiltration of CCR8+Treg has been shown to associate with 
high thymocyte selection associated high mobility group 
box (TOX), an exhaustion marker in CD8+T cells, in some 
types of cancer patients.52,53 Elimination of CCR8+Treg 
using antibodies is expected to advance the treatment of 
these cancer patients. Targeting CCR8 may offer more 
specific antitumor activity than other approaches aimed at 
Treg removal.53,54 In mice, CCR8+T cell depletion therapy 
using anti-CCR8 mAbs induces tumor-specific immune 
responses without triggering autoimmune responses 
or immune reactions in the TME.36 Since C8Mab-21 
recognizes cell surface hCCR8, we plan to investigate 
its potential function against Treg, such as detection 
and interfering effects, in future studies. Furthermore, 
antibody-dependent cellular cytotoxicity (ADCC) activity 
and complement-dependent cytotoxicity have previously 
been enhanced by modifying isotypes and defucosylating 
mAbs.55,56 C8Mab-21 is a mouse IgM, which lacks ADCC 
activity. Although the crosslinking property of IgM is lost, 
it will be converted into a mouse IgG2a version to evaluate 
the effect of antitumor activities in xenograft models. We 
successfully cloned and determined the complementarity-
determining regions of C8Mab-21 (Figure S4).

Interestingly, a correlation between cancer-associated 
fibroblasts (CAFs) and CCR8 has been found from 
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Figure 2. Flow cytometric analysis of anti-hCCR8 monoclonal antibodies against CHO/hCCR8 and CHO-K1. CHO/hCCR8 (A) and CHO-K1 (B) cells 
were treated with 0.02 – 20 µg/mL of C8Mab-21, S19017D, and L263G8 (red line), followed by treatment with Alexa Fluor 488-conjugated anti-mouse 
Immunoglobulin G. Fluorescence data were collected using the SA3800 Cell Analyzer. The black line represents the control group (no primary antibody 
treatment).
Abbreviations: CHO: Chinese hamster ovary; hCCR8: Human C-C motif chemokine receptor-8.

A

B
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Figure 3. Flow cytometric analysis of anti-hCCR8 monoclonal antibodies against endogenously hCCR8-expressing cells. TALL-1 (A), CCRF-HSB2 (B), 
and NK cells (C) were treated with 0.02 – 20 µg/mL of C8Mab-21, S19017D, and L263G8 (red line), followed by treatment with Alexa Fluor 488-conjugated 
anti-mouse Immunoglobulin G. Fluorescence data were collected using the SA3800 Cell Analyzer. The black line represents the control group (no primary 
antibody treatment).
Abbreviations: NK cells: Natural killer cells; hCCR8: Human C-C motif chemokine receptor-8.
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the results of omics analysis.29 CCR8 is suggested to be 
involved in the pathogenesis of various cancer types.24,25 
CAFs, similar to Tregs, are one of the tumor-suppressive 
factors known to interfere with the function of tumor 
immune cells by promoting fibrosis and constructing 
the extracellular matrix in the TME.1,57 CAFs with a 
myofibroblastic-like phenotype transfer large amounts 
of proteins to the surrounding endothelial cells through 
matrix-bound vesicles, which may contribute to cancer 

progression and treatment resistance.58,59 Recently, the 
phenotypes of CAF have been reported to associate with 
either better or worse outcomes in NSCLC patients.60 
Although further functional analysis of CCR8-expressing 
CAFs is required, targeting CCR8 could suppress Treg and 
CAFs, and lead to synergistic antitumor immunotherapy 
results. Therefore, it is well worth evaluating the impact of 
C8Mab-21 on CAFs.

Figure 4. The analysis of the binding affinity of anti-hCCR8 monoclonal 
antibodies for CHO/hCCR8. CHO/hCCR8 cells were suspended in 100 
µL of serially diluted C8Mab-21 (100 µg/mL – 0.006 µg/mL) (A), S19017D 
(10 µg/mL – 0.0006 µg/mL) (B), or L263G8 (10 µg/mL – 0.0006 µg/
mL) (C). The cells were then treated with Alexa Fluor 488-conjugated 
anti-mouse immunoglobulin G. Fluorescence data were subsequently 
collected using the BD FACSLyric, and the EC50 values were calculated 
by GraphPad PRISM 6.
Abbreviations: GeoMean: Geometric mean; hCCR8: Human C-C motif 
chemokine receptor-8.

A

B

C

Figure 5. The analysis of the binding affinity of anti-hCCR8 monoclonal 
antibodies for TALL-1. TALL-1 cells were suspended in 100 µL of serially 
diluted C8Mab-21 (100 µg/mL – 0.006 µg/mL) (A), S19017D (10 µg/
mL, 2.5 µg/mL – 0.0006 µg/mL) (B), or L263G8 (0.625 µg/mL – 0.0006 
µg/mL) (C). Then, cells were treated with Alexa Fluor 488-conjugated 
anti-mouse immunoglobulin G. Fluorescence data were subsequently 
collected using the BD FACSLyric, following the calculation of the EC50 
by GraphPad PRISM 6.
Abbreviations: GeoMean: Geometric mean; hCCR8: Human C-C motif 
chemokine receptor-8.
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5. Conclusion
C8Mab-21, established by the CBIS method, is a useful tool 
for analyzing the hCCR8-positive cells by flow cytometry.
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