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Epitope Mapping of an Anti-Mouse CD39 Monoclonal
Antibody Using PA Scanning and RIEDL Scanning

Yuki Okada, Hiroyuki Suzuki, Tomohiro Tanaka, Mika K. Kaneko, and Yukinari Kato

A cell-surface ectonucleotidase CD39 mediates the conversion of extracellular adenosine triphosphate into
immunosuppressive adenosine with another ectonucleotidase CD73. The elevated adenosine in the tumor
microenvironment attenuates antitumor immunity, which promotes tumor cell immunologic escape and pro-
gression. Anti-CD39 monoclonal antibodies (mAbs), which suppress the enzymatic activity, can be applied to
antitumor therapy. Therefore, an understanding of the relationship between the inhibitory activity and epitope of
mAbs is important. We previously established an anti-mouse CD39 (anti-mCD39) mAb, C39Mab-1 using the
Cell-Based Immunization and Screening method. In this study, we determined the critical epitope of C39Mab-1
using flow cytometry. We performed the PA tag (12 amino acids [aa])-substituted analysis (named PA scan-
ning) and RIEDL tag (5 aa)-substituted analysis (named RIEDL scanning) to determine the critical epitope of
C39Mab-1 using flow cytometry. By the combination of PA scanning and RIEDL scanning, we identified the
conformational epitope, spanning three segments of 275–279, 282–291, and 306–323 aa of mCD39. These
analyses would contribute to the identification of the conformational epitope of membrane proteins.
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Introduction

I n the tumor microenvironment (TME), high con-
centrations of extracellular adenosine triphosphate (ATP)

(100 to 500mM) exist compared to nanomolar order in normal
tissues due to the passive release of cell death and active se-
cretion by tumor cells and other subsets.1–3 The extracellular
adenosine, produced by the hydrolysis of extracellular ATP, is
involved in immunosuppressive TME4 and suppresses anti-
tumor immune responses and enhances the immunologic es-
cape of tumor cells.5 Therefore, the extent of ATP release and
its degradation to adenosine should be controlled to restrict the
immunosuppressive TME and to facilitate the antitumor im-
munity during cancer immunotherapy.6,7

CD39 (ectonucleoside triphosphate diphosphohydrolase 1;
encoded by ENTPD1) protein has 510 amino acids (aa) and
harbors 7 potential N-linked glycosylation sites and 11 cys-
teine residues.8 Two transmembrane domains exist in the
CD39 protein. In the extracellular domain of CD39, five
highly conserved segments mediate the enzymatic activity to

catalyze the hydrolysis of extracellular ATP and adenosine
diphosphate to adenosine monophosphate. Then, CD73 (5¢-
nucleotidase; encoded by NT5E) dephosphorylates AMP into
adenosine.9

Since CD39 mediates the dephosphorylation of extracel-
lular ATP to immunosuppressive adenosine, anti-CD39
monoclonal antibodies (mAbs) have been generated to
modulate the adenosine metabolism.6 A preclinical study
showed that B66, an anti-mouse CD39 (mCD39) mAb, can
inhibit mCD39 enzymatic activity in vitro and exerted the
antitumor effect by the mono- or combination therapy with
the PD-1 blockade.10 The anti-human CD39 mAbs, such as
TTX-030, IPH5201, and SRF-617, were designed to inhibit
the CD39 enzymatic activity.7,10 These mAbs have been
evaluated in clinical trials for solid tumors in combination
with chemotherapeutic agents or immune checkpoint in-
hibitors.8 However, the relationship between the inhibitory
activity and the epitope has not been clarified.

We previously established a novel anti-mCD39 mAb
(C39Mab-1) by the Cell-Based Immunization and Screening
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(CBIS) method,11–36 and evaluated its applications, including
flow cytometry and western blot analyses.37 In this study, we
performed epitope mapping of C39Mab-1 using flow
cytometry-mediated novel strategies, named PA scanning
and RIEDL scanning.

Materials and Methods

Antibodies

C39Mab-1 (an anti-mCD39 mAb),37 LpMab-7 (an anti-
RIEDL [R*] tag mAb),38–46 and NZ-1 (an anti-PA tag
mAb)47–53 were described previously. An anti-mCD39 mAb
(clone 5F2, mouse IgG1, kappa) was purchased from
BioLegend (San Diego, CA). Alexa Fluor 488-conjugated
anti-mouse IgG and anti-rat IgG were purchased from Cell
Signaling Technology, Inc. (Danvers, MA).

Plasmid construction and transfection

mCD39 cDNA was cloned into a pCAG-Ble vector
(FUJIFILM Wako Pure Chemical Corporation, Osaka,
Japan). For PA scanning, the substitution of PA tag
(GVAMPGAEDDVV) in mCD39 was performed with oli-
gonucleotides containing PA tag sequence at the desired
position. For example, for the substitution of the PA tag from
K288 to P299 of mCD39, we constructed E287-
GVAMPGAEDDVV-C300 (288-PA-299) in mCD39. For
RIEDL scanning, the substitution of the R* tag in mCD39
was performed with oligonucleotides containing the R* tag
sequence at the desired position. For example, for the sub-
stitution of the R* tag from E287 to N291 of mCD39, we
constructed Y286-RIEDL-V292 (287-R*-291) in mCD39.

Alanine scanning in the mCD39 sequence was performed
with oligonucleotides containing the alanine sequence at the

FIG. 1. The PA tag-substituted mutants of mCD39. The reactivities of C39Mab-1 are indicated: +, reactive; -, nonreactive.
mCD39, mouse CD39.
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FIG. 2. Epitope determination of C39Mab-1 using PA tag-substituted mutants of mCD39. The PA tag-substituted mutants
of mCD39 were transiently expressed in CHO-K1 cells. The mutants-expressed CHO-K1 cells were incubated with 1 mg/mL
of C39Mab-1 (A, red line), 1mg/mL of NZ-1 (B, red line), or control blocking buffer (black line), followed by secondary
antibodies treatment. The data were analyzed using the SA3800 Cell Analyzer. CHO, Chinese hamster ovary; P. C., positive
control (CHO/PA-CD133); WT, wild type mCD39.
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desired position. The PCR fragments bearing the desired
mutations were inserted into the pCAG-Ble vector (FUJI-
FILM Wako Pure Chemical Corporation) using an In-Fusion
HD Cloning Kit (Takara Bio, Inc., Shiga, Japan).

The mCD39 mutant plasmids were transiently transfected
into Chinese hamster ovary (CHO)-K1 cells (the American
Type Culture Collection, Manassas, VA) using the Neon
Transfection System (Thermo Fisher Scientific, Inc., Wal-
tham, MA). CHO-K1 cells and transfectants were cultured in
Roswell Park Memorial Institute-1640 medium (Nacalai
Tesque, Inc., Kyoto, Japan) supplemented with 10% heat-
inactivated fetal bovine serum (Thermo Fisher Scientific,
Inc.), 100 units/mL of penicillin, 100 lg/mL of streptomycin,
and 0.25 lg/mL of amphotericin B (Nacalai Tesque, Inc.).
The cells were cultured at 37�C in a humidified atmosphere
containing 5% carbon dioxide and 95% air.

Flow cytometry

CHO-K1 cells and transfectants were harvested after a
brief exposure to 0.25% trypsin in 1 mM ethylenediamine-
tetraacetic acid (Nacalai Tesque, Inc.) and washed with 0.1%
bovine serum albumin in phosphate-buffered saline.
C39Mab-1 (1 lg/mL), LpMab-7 (10 lg/mL), or NZ-1
(1 lg/mL) were incubated for 30 minutes at 4�C. The cells
were further treated with Alexa Fluor 488-conjugated anti-
mouse IgG (1:2000 for LpMab-7 and 5F2) or anti-rat IgG
(1:2000 for C39Mab-1 and NZ-1). Fluorescence data were
collected using the SA3800 Cell Analyzer (Sony Corp., To-
kyo, Japan).

Results

Epitope mapping of C39Mab-1 using flow cytometry
with PA tag-substituted mCD39

We previously established an anti-mCD39 mAb (C39Mab-
1) by the CBIS method.37 To determine the C39Mab-1 epi-
tope, we first examined the reactivity to the peptides that
cover the extracellular domain of mCD39. However,
C39Mab-1 did not react with the peptides (data not shown),
suggesting that C39Mab-1 recognizes a conformational an-
d/or modified epitope.

To identify the binding epitope of C39Mab-1, we generated
PA tag (GVAMPGAEDDVV)-substituted mCD39 mutants
as shown in Figure 1. We analyzed the reactivity of C39Mab-
1 against the PA tag-substituted mCD39 (named PA scan-
ning). As shown in Figure 2A, the reactivity of C39Mab-1
almost completely disappeared in 255-PA-266, 267-PA-278, 269-
PA-280, 282-PA-293, 288-PA-299, 301-PA-312, 312-PA-323, 325-
PA-336, and 415-PA-426 mutants of mCD39. In contrast, the
reactivity of C39Mab-1 was observed in the PA tag-
substituted mutants of 38–253, 343–413, and 427–462 aa.
The cell surface expression of each mutant was confirmed by
an anti-PA tag mAb, NZ-1 (Fig. 2B). The reactivity was
summarized in Figure 1. These results indicated that the
epitope of C39Mab-1 contains 255–336 and 415–426 aa of
mCD39.

Epitope mapping of C39Mab-1 using flow cytometry
with RIEDL tag-substituted mCD39

As shown in Figure 2A, C39Mab-1 did not react with the
continuous PA tag-substituted region of 255–336 aa in

mCD39. We generated the R* tag-substituted mCD39 as
shown in Figure 3 to narrow down the C39Mab-1 epitope. We
analyzed the reactivity of C39Mab-1 against the R* tag-
substituted mCD39 (named RIEDL scanning). As shown in
Figure 4A, the reactivity of C39Mab-1 almost completely
disappeared in 275-R*-279, 282-R*-286, 287-R*-291, 306-R*-310,

311-R*-315, 316-R*-320, and 319-R*-323 mutants of mCD39. In
contrast, the reactivity of C39Mab-1 was observed in R* tag-
substituted mutants of 255–274, 276–280, 292–305, and
325–336 aa. The cell surface expression of each mutant was
confirmed by an anti-R* tag mAb, LpMab-7 (Fig. 4B). The
reactivity was summarized in Figure 3. These results nar-
rowed down the epitope of C39Mab-1 in 275–279, 282–291,
and 306–323 aa of mCD39.

Epitope mapping of C39Mab-1 using flow cytometry
with 1 · alanine- or 2 · alanine-substituted mCD39

The 1 · alanine- or 2 · alanine-substituted mutant analyses
are important strategies to determine the center of the epi-
tope.54–56 We next generated 33 alanine-substituted mCD39
in 275th to 323rd aa of mCD39 and investigated the reactivity
of C39Mab-1 against CHO-K1 cells, which overexpressed the
mCD39 mutants transiently. As a result, C39Mab-1 reacted
with all alanine-substituted mutants and wild type (Supple-
mentary Fig. S1).

We also examined the reactivity of C39Mab-1 against
2 · alanine-substituted mCD39; however, C39Mab-1 reacted

FIG. 3. The RIEDL tag-substituted mutants of mCD39.
The reactivities of C39Mab-1 are indicated: +, reactive; -,
nonreactive.

EPITOPE MAPPING OF ANTI-MOUSE CD39 MAB 47

D
ow

nl
oa

de
d 

by
 Y

uk
in

ar
i K

at
o 

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

4/
09

/2
4.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



FIG. 4. Epitope determination of C39Mab-1 using RIEDL tag-substituted mutants of mCD39. The RIEDL (R*) tag-
substituted mutants of mCD39 were transiently expressed in CHO-K1 cells. The mutants-expressed CHO-K1 cells were
incubated with 1 mg/mL of C39Mab-1 (A, red line), 10mg/mL of LpMab-7 (B, red line), or control blocking buffer (black
line), followed by secondary antibodies treatment. The data were analyzed using the SA3800 Cell Analyzer. P. C., positive
control (CHO/2·RIEDL-seaPDPN).24
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with all mutants (Supplementary Fig. S2). Therefore, we
could not determine the epitope of C39Mab-1 using 1 · ala-
nine or 2 · alanine scanning methods.

Discussion

In this study, we performed the flow cytometry-based
epitope mapping of C39Mab-1 using the PA scanning
(Figs. 1, 2) and the RIEDL scanning (Figs. 3, 4). We found
that the three segments, 275–279, 282–291, and 306–323 aa
of mCD39 are important for the recognition by C39Mab-1.

Zebisch et al. demonstrated the crystal structure of rat
CD39 between the two lobes of the catalytic domain.57

Figure 5A shows the structure of rat CD39 (PDB ID: 3ZX3).
Apyrase-conserved regions (ACR1–5) form the active-site
cleft,58 which is distant from the three segments identified as
C39Mab-1 epitope. As shown in Figure 5B, the corre-
sponding rat CD39 sequence to the three segments forms a
b-sheet structure. In mouse sequence motifs, 276-VLKD-279,

287-EKVVN-291, and 312-QFRIQG-317 could contribute to

the formation of the b-sheet (Fig. 5C). The substitution of
the R* tag on not only the above three motifs but also sur-
rounding sequence may disrupt the b-sheet structure, which
results in the impaired recognition by C39Mab-1. Although
we could not determine the critical aa of the epitope by
1 · alanine or 2 · alanine scanning methods (Supplementary
Figs. S1, S2), it would be interesting to introduce mutations
between some b-sheet segments and examine the reactivity
of C39Mab-1.

Therapeutic anti-CD39 mAbs, including TTX-030, were
designed to inhibit CD39 enzymatic activity through the
uncompetitive allosteric mechanism of action.7,10 The epi-
tope of TTX-030 was determined as E142 to Y159 using the
human-mouse CD39 chimeric protein by flow cytometry.59

The region is distal to the ATP-binding residues (E174 and
S218), supporting the allosteric mechanism of action by
TTX-030. However, the optimal mAb-binding sites to inhibit
the CD39 enzymatic activity have not been identified.
Therefore, the detailed relationship between each mAb epi-
tope and the inhibitory activity should be determined. The PA

FIG. 5. Structure of CD39 and putative epitope of C39Mab-1. (A) Rat CD39 structure (PDB ID: 3ZX3). The corre-
sponding sequence to the three segments of C39Mab-1 epitope segments is highlighted. Apyrase-conserved regions (ACR1–
5) are also indicated. (B) The alignment of rat and mouse CD39 sequence around C39Mab-1 epitope segments. The
underlined sequences form a b-sheet as shown in (A). (C) Putative b-sheet structure of C39Mab-1 epitope segments.
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scanning and RIEDL scanning would contribute to the de-
termination of the conformational epitope of not only CD39
but also other membranous antigens.
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