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One of G protein-coupled receptors, CC chemokine receptor 3 (CCR3), is expressed in eosinophils, basophils, a
subset of Th2 lymphocytes, mast cells, and airway epithelial cells. CCR3 levels in the serum of colorectal
cancer patients are significantly higher than in control groups. Moreover, CCR3 is essential for recruiting
eosinophils into the lung. Therefore, CCR3 is considered both a therapeutic target for colorectal cancer and
allergic diseases. Previously, we established anti-mouse CCR3 (mCCR3) monoclonal antibodies (mAbs),
C3Mab-6 (rat IgG1, kappa) and C3Mab-7 (rat IgG1, kappa), by immunizing a rat with an N-terminal peptide of
mCCR3. These mAbs can be used in flow cytometry and enzyme-linked immunosorbent assays. In this study,
we performed the epitope mapping of C3Mab-6 and C3Mab-7 using alanine scanning. The reactivity between
these mAbs and point mutants of mCCR3 were analyzed using flow cytometry. The results indicated that Phe3,
Asn4, Thr5, Asp6, Glu7, Lys9, Thr10, and Glu13 of mCCR3 are essential for C3Mab-6 binding, whereas Phe15
and Glu16 are essential for C3Mab-7 binding.
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Introduction

T he CC chemokine receptor 3 (CCR3), also known as
CD193, is a member of the G protein-coupled receptor.1

CCR3 is a seven-transmembrane domain receptor with four
extracellular domains, and the N-terminal region of CCR3 is
located in extracellular, whereas the C-terminal region is lo-
cated in intracellular. CCR3 is expressed on the surface of
eosinophils, basophils, a subset of Th2 lymphocytes, mast
cells, and airway epithelial cells.2–6 Some CC chemokines,
such as eotaxin-1, eotaxin-2, eotaxin-3, MCP-3, and RANTES,
are known to be ligands for CCR3.7–9

CCR3 and its ligands play an important role in recruiting
eosinophils into the lung, inducing airway hyper-
responsiveness in a murine model of allergic asthma.10–13

CCR3 also contributes to ocular allergy.14 Moreover, CCR3
levels in the serum of colorectal cancer patients are signifi-
cantly higher than in control groups.15,16 High expression
levels of eotaxins occur in some tumors such as colorectal

cancer,17 breast cancer,18 and oral squamous cell carcino-
mas.19 Therefore, CCR3 is regarded as the therapeutic target
for both allergic diseases and cancers.9,15,20–22

Monoclonal antibodies (mAbs) are used for the treatment
of inflammatory diseases and cancers.23–26 Many therapeutic
mAbs possess neutralizing activity through the blockade
between the targets and their ligands.27 The epitope identi-
fication of mAbs is important to elucidate the pharmacolog-
ical function of mAbs, and is essential to avoid unexpected
cross-reactivity. Previously, we produced novel anti-mouse
CCR3 (mCCR3) mAbs, C3Mab-6 (rat IgG1, kappa), and
C3Mab-7 (rat IgG1, kappa) by immunizing a rat with the
mCCR3 N-terminal peptide.28 C3Mab-6 and C3Mab-7 re-
acted not only with mCCR3-overexpressed Chinese hamster
ovary-K1 (CHO/mCCR3) cells, but also P388 (mouse lym-
phoid neoplasma) and J774-1 (mouse macrophage-like) cells,
which express mCCR3 endogenously in flow cytometry.
However, the critical amino acids of mCCR3 for the binding
of C3Mab-6 and C3Mab-7 have not been determined.
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FIG. 1. Determination of the C3Mab-6 and C3Mab-7 epitope for mCCR3 by flow cytometry. C3Mab-6 (1 mg/mL; gray
line), C3Mab-7 (1 mg/mL; gray line), or NZ-1 (1 mg/mL; gray line) were treated with mCCR3 point mutants-overexpressed
CHO-K1 cells for 30 minutes at 4�C, followed by the addition of the secondary antibody. The black line represents the
negative control. CHO-K1, Chinese hamster ovary-K1; mCCR3, mouse CC chemokine receptor 3.
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In this study, we determined the binding epitope of
C3Mab-6 and C3Mab-7 to mCCR3 using alanine scanning by
flow cytometry.29–34

Materials and Methods

Plasmids of mCCR3 point mutants

The pEX-A2J2 plasmid subcloned mCCR3 (accession No.
NM_009914.4) was purchased from Eurofins Genomics KK
(Tokyo, Japan).28,35–37 Substitutions of amino acids to alanine
in the mCCR3 sequence were conducted by QuikChange
Lightning Site-Directed Mutagenesis Kits (Agilent Technolo-
gies, Inc., Santa Clara, CA). PCR fragments bearing the desired
mutations were inserted into the pCAG-Ble vector (FUJIFILM
Wako Pure Chemical Corporation, Osaka, Japan) and a PA16
tag38–41 was added at the N-terminus using the In-Fusion HD
Cloning Kit (Takara Bio, Inc., Shiga, Japan). The alanine
(glycine) substitution mutants (A2G, F3A, N4A, T5A, D6A,

E7A, I8A, K9A, T10A, V11A, V12A, E13A, S14A, F15A,
E16A, T17A, T18A, P19A, and Y20A) were generated using
QuikChange Lightning Site-Directed Mutagenesis Kits (Agi-
lent Technologies Inc., Santa Clara, CA, USA).

Cell lines

CHO-K1 cells were obtained from the America Type Cul-
ture Collection (ATCC, Manassas, VA). The CHO/mCCR3
cells were produced in our previous study.37 mCCR3 point
mutant plasmids were transfected into CHO-K1 cells using the
Neon Transfection System (Thermo Fisher Scientific, Inc.,
Waltham, MA). Stable transfectants were selected using a cell
sorter (SH800; Sony Corp., Tokyo, Japan). CHO/mCCR3 cell
and stable transfectants were cultured in RPMI 1640 medium
(Nacalai Tesque, Inc., Kyoto, Japan) supplemented with 10%
heat-inactivated fetal bovine serum (Thermo Fisher Scientific,
Inc.), 100 U/mL of penicillin, 100 lg/mL streptomycin, and

FIG. 2. Schematic illustration of C3Mab-6 and C3Mab-7 epitope for mCCR3. (A) C3Mab-6 epitope for mCCR3 involves
Phe3, Asn4, Thr5, Asp6, Glu7, Lys9, Thr10, and Glu13 of mCCR3. (B) C3Mab-7 epitope for mCCR3 involves Phe15 and
Glu16 of mCCR3.
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0.25 lg/mL amphotericin B (Nacalai Tesque, Inc.) at 37�C in a
humidified atmosphere containing 5% CO2. The stable
transfectants were cultivated in a medium containing
0.5 mg/mL Zeocin (InvivoGen, San Diego, CA).

Flow cytometry

Cells were harvested after brief exposure to 0.25% tryp-
sin/1 mM ethylenediaminetetraacetic acid (Nacalai Tesque,
Inc.). After washing with 0.1% bovine serum albumin in
phosphate-buffered saline, cells were treated with C3Mab-6,
C3Mab-7, or NZ-1 (1lg/mL) for 30 minutes at 4�C and sub-
sequently with Alexa Fluor 488-conjugated anti-rat IgG (1:1000;
Cell Signaling Technology, Inc., Danvers, MA). Fluorescence
data were collected using EC800 Cell Analyzer (Sony Corp.).

Results

To investigate the epitope of C3Mab-6 and C3Mab-7 for
mCCR3, we conducted alanine scanning. We constructed 19
alanine substitution mutants of mCCR3. Mutant proteins
were stably expressed on CHO-K1 cells, and the reactivities
against C3Mab-6, C3Mab-7, or anti-PA16 tag mAb (NZ-1)
were analyzed using flow cytometry.

First, we investigated the cell surface expression of mCCR3
mutants on CHO-K1 cells using NZ-1. The reactivities of
NZ-1 against each mCCR3 mutant were confirmed in all the
mutants (Fig. 1, right). Since PA16 tag was not conjugated in
the wild-type mCCR3, NZ-1 did not react with it (Fig. 1, right).
Next, we examined the reactivities of C3Mab-6 and C3Mab-7
against mCCR3 mutants. C3Mab-6 reacted with 11 mutants
(A2G, I8A, V11A, V12A, S14A, F15A, E16A, T17A, T18A,
P19A, and Y20A) and wild-type mCCR3 (Fig. 1, left).

In contrast, C3Mab-6 did not react with 8 mutants (F3A, N4A,
T5A, D6A, E7A, K9A, T10A, and E13A) (Fig. 1, left). C3Mab-7
reacted with 17 mutants (A2G, F3A, N4A, T5A, D6A, E7A, I8A,
K9A, T10A, V11A, V12A, E13A, S14A, T17A, T18A, P19A,
and Y20A) and wild-type mCCR3, whereas 2 mutants (F15A
and E16A) lost their reactivity to C3Mab-7 (Fig. 1, middle).
These results indicated that eight amino acids of mCCR3 (Phe3,
Asn4, Thr5, Asp6, Glu7, Lys9, Thr10, and Glu13) are critical for
C3Mab-6 binding (Fig. 2A), whereas two amino acids (Phe15
and Glu16) are critical for that on C3Mab-7 (Fig. 2B).

Discussion

Therapeutic mAbs possesses biological activities, includ-
ing neutralizing activity against the physiological ligands.27

The epitope determination in the target protein is necessary to
understand the properties of mAbs. Previously, we estab-
lished two anti-mCCR3 mAbs, C3Mab-6 and C3Mab-7,
which were established by immunizing the N-terminal pep-
tide of mCCR3 (1-MAFNTDEIKTVVESFETTP-19).28

Therefore, the binding epitope of C3Mab-6 and C3Mab-7 are
included within the residues.

In this study, we performed the epitope mapping of
C3Mab-6 and C3Mab-7 using alanine scanning of the
mCCR3 N-terminal domain. The results showed that C3Mab-
6 and C3Mab-7 have different binding regions of mCCR3
(Fig. 1). The C3Mab-6 epitope is mainly located in the first
half of the N-terminal region, whereas that of C3Mab-7 is
located in another half of the N-terminal region (Fig. 2).
Structural analyses showed that eotaxin binds to the

N-terminus of human CCR3 (residues 8–23).42,43 Therefore,
it is expected that both C3Mab-6 and C3Mab-7 may compete
with eotaxin for binding to mCCR3.

Zhu et al. showed that the dissociation constants (KD) of
CCR3’s binding to eotaxin-1, -2, and -3 are 2.1, 9.7, and
1.2 · 10-9 M, respectively.44 We previously showed that
C3Mab-6 and C3Mab-7 bound to CHO/mCCR3 with KD of
8.7 · 10-9 M and 3.7 · 10-9 M, respectively.28 The KD values of
C3Mab-6 and C3Mab-7 to CHO/mCCR3 were comparable with
that of eotaxin. Therefore, we expect that C3Mab-6 and C3Mab-
7 treatments would block eotaxin’s binding to CHO/mCCR3.

In future studies, the neutralizing activities of C3Mab-6 and
C3Mab-7 should be further assessed. Moreover, these mAbs
will be useful for depleting mCCR3-expressing eosinophils
and basophils, and targeting mCCR3-positive cancers.
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