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Establishment of a Sensitive Monoclonal Antibody
Against Mouse CCR9 (C9Mab-24) for Flow Cytometry
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The CC chemokine receptor 9 (CCR9), also known as CD199, is one of chemokine receptors. The CC
chemokine ligand 25 (CCL25) is known to be the only ligand for CCR9. The CCR9-CCL25 interaction plays
important roles in chemotaxis of lymphocytes and tumor cell migration. Therefore, CCR9-CCL25 axis is a
promising target for tumor therapy and diagnosis. In this study, we established a sensitive and specific
monoclonal antibody (mAb) against mouse CCR9 (mCCR9) using N-terminal peptide immunization method.
The established anti-mCCR9 mAb, C9Mab-24 (rat immunoglobulin [IgG]2a, kappa), reacted with mCCR9-
overexpressed Chinese hamster ovary-K1 (CHO/mCCR9) and mCCR9-endogenously expressed cell line, RL2,
through flow cytometry. Kinetic analyses using flow cytometry showed that the dissociation constants (KD) of
C9Mab-24 for CHO/mCCR9 and RL2 cell lines were 6.0 · 10-9 M and 4.7 · 10-10 M, respectively. Results
indicated that C9Mab-24 is useful for detecting mCCR9 through flow cytometry, thereby providing a possibility
for targeting mCCR9-expressing cells in vivo experiments.
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Introduction

C hemokines are 8–14 kDa proteins, which are known to
be ligand for G protein-coupled receptors (GPCRs).

Chemokine-GPCR pathway regulates cellular trafficking of
lymphocytes and plays an important role in the immune
system.(1,2) Chemokines are divided into four subfamilies,
CC, CXC, XC, and CX3C chemokines, based on the differ-
ences of cysteine positions at their N-terminus.(3,4) Chemo-
kine receptors are also classified into four families that
correspond to their ligand subfamilies: CC chemokine re-
ceptor (CCR), CXC chemokine receptor (CXCR), CX3C
chemokine receptor (CX3CR), and XC chemokine receptor
(XCR).(5) Chemokines involve in the pathogenesis of several
diseases, including allergic inflammatory disease, human
immunodeficiency virus-associated diseases, and cancer.(6–8)

CCR9, also known as CD199, is a member of GPCR family
consisting of an extracellular N-terminus, seven membrane-
spanning regions, and a cytoplasmic C-terminus.(9–11) CC
chemokine ligand 25 (CCL25) is known to be the only ligand

for the CCR9. The CCR9-CCL25 mediates chemotaxis of
lymphocytes.(9–11) Furthermore, the CCR9-CCL25 axis plays
important roles in the inhibition of apoptosis,(12,13) prolifera-
tion,(14–16) invasion,(17) and metastasis(18–20) during tumor pro-
gression.(21–24) CCR9 is highly expressed in T cell lineage acute
lymphoblastic leukemia (T-ALL) cells,(25) lung adenocarci-
noma tissues,(26) breast cancer cell line (MDA-MB-231),(27) and
ovarian cancer cell lines (OVCAR-3 and CAOV-3).(28)

The elevated expression of CCL25 is observed in
T-ALL,(29) prostate,(30) breast,(28) and ovarian cancers.(28,31)

The CCR9–CCL25 interaction mediates PI3K/AKT-
dependent antiapoptotic signals, which results in low apo-
ptosis and modest chemotherapeutic response.(30) Therefore,
the CCR9-CCL25 interaction will be a promising target for
cancer treatment and diagnosis.

In this study, we established a sensitive and specific
monoclonal antibody (mAb) against mouse CCR9 (mCCR9)
using N-terminal peptide immunization method and deter-
mined the dissociation constants (KD) using mCCR9-
expressed cell lines by flow cytometry.
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Materials and Methods

Peptides

Eurofins Genomics KK (Tokyo, Japan) synthesized a
partial sequence of the N-terminal extracellular region of
mCCR9 (accession no. NP_001160097) with cysteine at
its C-terminus (mCCR9p1-19C; sequence: MMPTELTSLI
PGMFDDFSYC). Subsequently, the keyhole limpet hemo-
cyanin (KLH) was conjugated at the C-terminus of the pep-
tide (mCCR9p1-19C-KLH).

Preparation of cell lines

Chinese hamster ovary (CHO)-K1 and P3X63Ag8U.1
(P3U1) cells were obtained from the American Type Culture
Collection (Manassas, VA). RL2 cells (mouse leukemia
cells) were obtained from the Cell Resource Center for
Biomedical Research Institute of Development, Aging and
Cancer Tohoku University (Miyagi, Japan). The expression
plasmid of mCCR9 (pCMV6neo-mCCR9-Myc-DDK) was
purchased from OriGene Technologies, Inc. (Rockville,
MD). The mCCR9 plasmid was transfected into CHO-K1
cells, using a Neon transfection system (Thermo Fisher Sci-
entific, Inc., Waltham, MA). Stable transfectants were es-
tablished through cell sorting using a cell sorter (SH800;
Sony Corp., Tokyo, Japan) using Roswell Park Memorial
Institute (RPMI) 1640 medium (Nacalai Tesque, Inc., Kyoto,
Japan), containing 10% heat-inactivated fetal bovine serum
(FBS; Thermo Fisher Scientific, Inc.), 100 U/mL of penicil-
lin, 100 lg/mL of streptomycin, 0.25 lg/mL of amphotericin
B (Nacalai Tesque, Inc.), and 0.5 mg/mL of G418 (Nacalai
Tesque, Inc.).

CHO-K1, P3U1, mCCR9-overexpressed CHO-K1
(CHO/mCCR9), and RL2 were cultured in RPMI 1640 me-
dium with 10% heat-inactivated FBS, 100 U/mL of penicil-
lin, 100 lg/mL of streptomycin, and 0.25 lg/mL of
amphotericin B. Cells were grown in a humidified incubator
at 37�C, at an atmosphere of 5% CO2 and 95% air.

Antibodies

Anti-mCCR9 mAbs (clone 9B1 and CW-1.2) were pur-
chased from BioLegend (San Diego, CA). A secondary Alexa
Fluor 488-conjugated anti-rat immunoglobulin (IgG) was
purchased from Cell Signaling Technology, Inc. (Danvers,
MA).

Production of hybridomas

A 5-week-old Sprague–Dawley rat was purchased from
CLEA Japan (Tokyo, Japan). Animals were housed under
specific pathogen-free conditions. All animal experiments
were also conducted according to relevant guidelines and
regulations to minimize animal suffering and distress in the
laboratory. The Animal Care and Use Committee of Tohoku
University (permit no. 2019NiA-001) approved animal ex-
periments. The rat was monitored daily for health during the
full 4-week duration of the experiment. A reduction of more
than 25% of the total body weight was defined as a humane
endpoint. During sacrifice, the rat was euthanized through
cervical dislocation, after which death was verified through
respiratory and cardiac arrest.

To develop mAbs against mCCR9, one rat was immunized
intraperitoneally, using 100 lg mCCR9p1-19C-KLH peptide
with Imject Alum (Thermo Fisher Scientific, Inc.). The pro-
cedure included three additional immunizations, which were
followed by a final booster intraperitoneal injection, 2 days
before the harvest of spleen cells. Harvested spleen cells were
subsequently fused with P3U1 cells, using PEG1500 (Roche
Diagnostics, Indianapolis, IN), after which hybridomas were
grown in an RPMI1640 medium supplemented with hypo-
xanthine, aminopterin, and thymidine for the selection
(Thermo Fisher Scientific, Inc.). Supernatants were subse-
quently screened with the mCCR9p1-19C peptide, using
enzyme-linked immunosorbent assay (ELISA), after flow
cytometry, using CHO/mCCR9 and CHO-K1 cells.

Enzyme-linked immunosorbent assay

The synthesized peptide, mCCR9p1-19C, was im-
mobilized on Nunc Maxisorp 96-well immunoplates (Ther-
mo Fisher Scientific, Inc.) at a concentration of 1 lg/mL for
30 minutes at 37�C. After washing with phosphate-buffered
saline (PBS) containing 0.05% Tween20 (PBST; Nacalai
Tesque, Inc.), wells were blocked with 1% bovine serum
albumin-containing PBST for 30 minutes at 37�C. Plates
were then incubated with supernatants of hybridomas, fol-
lowed by a peroxidase-conjugated anti-rat IgG (1:20000 di-
luted; Sigma-Aldrich Corp., St. Louis, MO). Next, enzymatic
reactions were conducted, using an ELISA POD Substrate
TMB Kit (Nacalai Tesque, Inc.), followed by the measure-
ment of the optical density at 655 nm, using an iMark mi-
croplate reader (Bio-Rad Laboratories, Inc., Berkeley, CA).

Purification of mAbs

The cultured supernatants of C9Mab-24-expressing hy-
bridomas were collected through centrifugation at 2330 · g
for 5 minutes, followed by filtration using Steritop (0.22 lm;
Merck KGaA, Darmstadt, Germany). Filtered supernatants
were subsequently applied to 1 mL Protein G-Sepharose
(Cytiva, Marlborough, MA). After washing with PBS, bound
antibodies were eluted with an IgG elution buffer (Thermo
Fisher Scientific, Inc.), followed by an immediate neutrali-
zation of eluates, using 1 M Tris-HCl. Finally, eluates were
concentrated, after which PBS was used to replace the elution
buffer, using Amicon Ultra (Merck KGaA).

Flow cytometric analyses

CHO-K1 and CHO/mCCR9 cells were harvested after an
exposure to 1 mM ethylenediaminetetraacetic acid (EDTA;
Nacalai Tesque, Inc.). CHO-K1, CHO/mCCR9, and RL2
cells were washed with 0.1% bovine serum albumin in PBS
and treated with 0.01, 0.1, 1, and 10 lg/mL primary mAbs for
30 minutes at 4�C. Then, cells were treated with Alexa Fluor
488-conjugated anti-rat IgG (1:2000 diluted), after which
fluorescence data were collected, using the BD FACSLyric
(BD Biosciences, Franklin Lakes, NJ).

Determination of dissociation constants (KD)
through flow cytometry

CHO/mCCR9 and RL2 cells were suspended in 100 lL
serially diluted anti-mCCR9 mAbs, after which 50 lL Alexa
Fluor 488-conjugated anti-rat IgG (1:200 diluted) was added.
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Afterward, fluorescence data were collected, using BD
FACSLyric. The KD were subsequently calculated by fitting
saturation binding curves to the built-in one-site binding
models in GraphPad PRISM 8 (GraphPad Software, Inc., La
Jolla, CA).

Results

Development of anti-mCCR9 mAbs
by peptide immunization

To develop anti-mCCR9 mAbs, one rat was immunized
with an mCCR9p1-19C-KLH peptide (Fig. 1A). Spleen was
then excised from the rat, after which splenocytes were fused
with myeloma P3U1 cells using PEG1500 (Fig. 1B). De-

veloped hybridomas were subsequently seeded into 20 of 96-
well plates and cultivated for 7 days. Then, wells in which
cultured supernatants were positive for the mCCR9p1-19C
peptide through ELISA were selected (Fig. 1C).

The ELISA screening approach identified strong signals
from mCCR9p1-19C peptide-immunized wells, no signal
was detected from control wells in 152 of 1916 wells
(7.93%). Afterward, ELISA-positive wells were screened
using flow cytometry for the selection of mCCR9-expressing
cell-reactive and CHO-K1-nonreactive supernatants
(Fig. 1C). The flow cytometric screening approach identified
strong signals from CHO/mCCR9 cells, and a weak or no
signal from CHO-K1 cells in 37/152 (24.3%). After limiting
dilution and several additional screenings, anti-mCCR9
mAbs, C9Mab-24 (rat IgG2a, kappa) was finally established
(Fig. 1D).

Flow cytometric analysis

We conducted flow cytometric analysis using three anti-
mCCR9 mAbs, C9Mab-24 and the commercially available
anti-mCCR9 mAbs (clone 9B1 and CW-1.2 from BioLe-
gend), against mCCR9-expressed cell lines CHO/mCCR9
and RL2. All three mAbs recognized CHO/mCCR9 cells
dose-dependently (Fig. 2A), whereas parental CHO-K1 cells
were not recognized by them except for 10 lg/mL of CW-1.2
(Fig. 2B). Although 9B1 did not react with CHO/mCCR9
cells at 0.01 lg/mL, C9Mab-24 and CW-1.2 reacted with the
cells even at 0.01 lg/mL (Fig. 2A). All three mAbs also re-
acted with RL2 cells dose-dependently, but 9B1 did not react
with RL2 cells at 0.1 and 0.01 lg/mL (Fig. 2C). These results
suggested that C9Mab-24 is specific for mCCR9, and is useful
for detecting exogenous and endogenous mCCR9 through
flow cytometry.

Kinetic analysis of the interaction of anti-mCCR9 mAbs
with mCCR9-expressed cells through flow cytometry

To determine the apparent KD of anti-mCCR9 mAbs with
mCCR9-expressed cells, we conducted kinetic analysis of
the interaction of C9Mab-24, 9B1, and CW-1.2 with
CHO/mCCR9 and RL2 cells using flow cytometry. The
geometric means of the fluorescence intensity were then
plotted versus the concentration of anti-mCCR9 mAbs, fol-
lowing fitting through one-site binding models in GraphPad
PRISM 8. The KD of C9Mab-24 for CHO/mCCR9 and RL2
cells were determined as 6.0 · 10-9 M (Fig. 3A) and
4.7 · 10-10 M (Fig. 3B), respectively. The KD of 9B1 for
CHO/mCCR9 and RL2 cells were determined as 2.7 · 10-8

M (Fig. 3C) and 8.7 · 10-8 M (Fig. 3D), respectively. The KD

of CW-1.2 for CHO/mCCR9 and RL2 cells were determined
as 4.3 · 10-9 M (Fig. 3E) and 2.9 · 10-10 M (Fig. 3F), re-
spectively. These results indicate that C9Mab-24 and CW-1.2
possess a high affinity for both CHO/mCCR9 cells and RL2
cells.

Discussion

Previously, we have succeeded in development of mAbs
against chemokine receptors, including mouse CCR2,(32)

human CCR2,(33) mouse CCR3,(34–36) mouse CCR4,(37)

mouse CCR8,(38–40) human CCR9,(41) and mouse
CXCR6.(42) In this study, we developed a novel anti-mCCR9

FIG. 1. Schematic illustration of the production of anti-
mCCR9 mAbs. (A) mCCR9p1-19C-KLH peptide was immu-
nized into one SD rat using an intraperitoneal injection.
(B) Spleen was excised and spleen cells were fused with P3U1
cells. (C) Culture supernatants were screened by ELISA and
then flow cytometry to select hybridomas that are producing
anti-mCCR9 mAb. (D) After limiting dilution and some addi-
tional screenings, mCCR9-specific mAb was finally established.
ELISA, enzyme-linked immunosorbent assay; KLH, keyhole
limpet hemocyanin; P3U1, P3X63Ag8U.1; mAb, monoclonal
antibody; mCCR9, mouse CCR9; SD, Sprague–Dawley.
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FIG. 2. Flow cytometry using anti-mCCR9 mAbs. CHO/mCCR9 (A), CHO-K1 (B), and RL2 (C) cells were treated with
0.01, 0.1, 1, and 10mg/mL of C9Mab-24 (upper panels), 9B1 (middle panels), or CW-1.2 (lower panels), followed by
treatment with Alexa Fluor 488-conjugated anti-rat IgG. Filled, without primary Ab as negative controls. CHO, Chinese
hamster ovary; IgG, immunoglobulin.
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mAb, C9Mab-24 (rat IgG2a, kappa), through immunization
with the N-terminal peptide of mCCR9. C9Mab-24 can detect
both exogenous and endogenous mCCR9 in flow cytometric
analysis (Fig. 2).

The specific and sensitive antibodies are essential to de-
velop therapeutic antibodies. Therapeutic antibodies possess
several mechanisms of action, including neutralization,(43)

antibody-dependent cellular cytotoxicity (ADCC), and
complement-dependent cytotoxicity (CDC).(44) Furthermore,
therapeutic antibodies can be utilized as a drug delivery
carrier,(45) Sharma et al. reported that blocking of the CCR9-
CCL25 interaction by anti-CCR9 mAb abrogates the CCL25-
mediated resistance to a chemotherapeutic agent, etoposide
in prostate cancer.(30) It has been also reported that anti-

CCR9 mAb inhibited the ovarian cancer migration and in-
vasiveness toward chemotactic gradients of CCL25.(28)

Therefore, CCR9 is an attractive therapeutic target and anti-
CCR9 mAbs are useful for cancer treatment.

In this study, we showed the specificity (Fig. 2) and high
affinities (Fig. 3A, B) of C9Mab-24. It has been reported that
GPCRs, including CCR9, CCR2, CCR3, CCR5, and
CXCR1, interact with their ligands at the N-terminal
region.(11,46–48) Since C9Mab-24 was developed by immu-
nizing N-terminal peptide of mCCR9, C9Mab-24 is ex-
pected to inhibit the binding of CCL25 to CCR9. Moreover,
rat IgG2a possesses ADCC and CDC activities. Therefore,
C9Mab-24 could be used for the elimination of mCCR9-
positive cells in vivo.

FIG. 3. Determination of the KD of anti-mCCR9 mAbs against mCCR9-expressing cells. CHO/mCCR9 (A, C, E) and RL-
2 (B, D, F) were suspended in 100mL serially diluted C9Mab-24 (0.0006–10 mg/mL, A, B), 9B1 (0.006–100 mg/mL, C, D) or
CW-1.2 (0.0006–10 mg/mL, E, F). Alexa Fluor 488-conjugated anti-rat IgG was then added. Fluorescence data were
obtained using BD FACSLyric. KD were calculated by fitting saturation binding curves to the built-in one-site binding
models in GraphPad PRISM 8.
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