Original Articles

Open camera or QR reader and scan code to access this article and other resources online.

Development of a Sensitive Anti-Human CCR9 Monoclonal Antibody (C₉Mab-11) by N-Terminal Peptide Immunization

Tomohiro Tanaka,¹ Hiroyuki Suzuki,² Yu Isoda,¹ Teizo Asano,¹ Takuro Nakamura,¹ Miyuki Yanaka,¹ Saori Handa,¹ Nozomi Takahashi,¹ Saori Okuno,¹ Takeo Yoshikawa,³ Guanjie Li,² Ren Nanamiya,¹ Nohara Goto,² Nami Tateyama,¹ Yuki Okada,² Hiyori Kobayashi,² Mika K. Kaneko,¹ and Yukinari Kato¹⁻³

The C-C chemokine receptor 9 (CCR9) belongs to the G-protein-coupled receptor superfamily, and is highly expressed on the T cells and intestinal cells. CCR9 regulates various immune responses by binding to the C-C chemokine ligand, CCL25, and is involved in inflammatory diseases and tumors. Therefore, the development of sensitive monoclonal antibodies (mAbs) for CCR9 is necessary for treatment and diagnosis. In this study, we established a specific anti-human CCR9 (hCCR9) mAb; C₉Mab-11 (mouse IgG_{2a}, kappa), using the synthetic peptide immunization method. C₉Mab-11 reacted with hCCR9-overexpressed Chinese hamster ovary-K1 (CHO/hCCR9) and hCCR9-endogenously expressed MOLT-4 (human T-lymphoblastic leukemia) cells in flow cytometry. The dissociation constant (K_D) of C₉Mab-11 for CHO/hCCR9 and MOLT-4 cells were determined to be 1.2×10^{-9} M and 4.9×10^{-10} M, respectively, indicating that C₉Mab-11 possesses a high affinity for both exogenously and endogenously hCCR9-expressing cells. Furthermore, C₉Mab-11 clearly detected hCCR9 protein in CHO/hCCR9 cells using western blot analysis. In summary, C₉Mab-11 can be a useful tool for analyzing hCCR9-related biological responses.

Keywords: human CCR9, monoclonal antibody, flow cytometry, western blot

Introduction

C HEMOKINES ARE 8- to 12-kDa chemotactic cytokines that regulate cell migration by binding to seventransmembrane G-protein-coupled receptors (GPCRs). Chemokines play pivotal roles during development, inflammation, and pathological processes, including cancer progression.¹ They can be divided into four categories: CC, CXC, CX3C, and XC subfamilies, depending on the number and position of N-terminal cysteine residue.

The C-C chemokine receptor 9 (CCR9), a member of GPCRs, is highly expressed in gut-homing T cells, thymocytes, B cells, dendritic cells, and intestinal cells.² CCR9 on immature T cells contributes to T cell activation and infiltration by binding to its dedicated ligand, CCL25/thymus-expressed chemokine.³ CCL25 is mainly secreted from epithelial cells of the thymus and small intestine, and inducts the T cells into intestinal tissues.^{4–6} CCR9/CCL25 has been reported to be involved in various inflammatory diseases.⁷ CCR9 expres-

sion is increased in mice myocardial infarction model, and abrogation of CCR9 improved the mice survival.⁸

In hepatitis, CCR9⁺ macrophages induced acute liver damage by interacting with helper T1 (Th1) cells.⁹ In dextran sulfate sodium-induced mice colitis, a model of inflammatory bowel disease (IBD), both CCR9 and CCL25 expression were elevated. In the colitis model, CCR9-knockout mice exhibited higher IBD score and mortality.¹⁰ Therefore, the targeting CCR9/CCL25 could be an attractive therapeutic strategy because of its involvement with inflammationassociated diseases. A clinical trial of the CCR9 antagonist CCX282-B against IBD had been conducted.^{11,12} CCR9 was also found to be expressed in T-acute lymphoblastic leukemia (T-ALL), which contributes to the progression of T-ALL.¹³ CD4⁺CCR9⁺T cells have been found to express large amounts of interleukin 21, inducible T cell costimulators, and the transcription factors, including Bcl-6. Furthermore, the CD4⁺CCR9⁺T cells support antibody production from B cells.¹⁴

¹Department of Antibody Drug Development, ²Department of Molecular Pharmacology, and ³Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.

Previously, we have developed various anti-GPCR monoclonal antibodies (mAbs) against mouse $CCR3^{15-17}$ and mouse $CCR8^{18-20}$ by using the Cell-Based Immunization and Screening (CBIS) method. Furthermore, anti-human CCR9 (hCCR9) mAb (clone C₉Mab-1) was also established using the CBIS method.²¹ We also identified the epitope of C₉Mab-1 on the N-terminal region of the hCCR9 protein.²² The aim of this study is to obtain more sensitive anti-hCCR9 mAbs by the synthetic peptide immunization method using the epitope region of C₉Mab-1.

Materials and Methods

Cell lines

Chinese hamster ovary (CHO)-K1 and P3X63Ag8U.1 (P3U1) cells were obtained from the American Type Culture Collection (ATCC; Manassas, VA). MOLT-4 (a human T-lymphoblastic leukemia cell line) was provided from the Japanese Collection of Research Bioresources (JCRB) Cell Bank (Osaka, Japan). The expression plasmid of hCCR9 (pCMV6neoCCR9-Myc-DDK) was purchased from OriGene Technologies, Inc. (Rockvile, MD) and was transfected into CHO-K1 cells using Lipofectamine LTX with Plus Reagent (Thermo Fisher Scientific, Inc., Waltham, MA). Stable transfectants were selected by limiting dilution and cultivation in a medium containing 0.5 mg/mL of G418 (Nacalai Tesque, Inc., Kyoto, Japan).

CHO-K1, P3U1, CHO/hCCR9, and MOLT-4 were cultured in a Roswell Park Memorial Institute (RPMI) 1640 medium (Nacalai Tesque, Inc.) that was supplemented with 10% heat-inactivated fetal bovine serum (Thermo Fisher Scientific, Inc.), 100 U/mL of penicillin, 100 μ g/mL of streptomycin, and 0.25 μ g/mL of amphotericin B (Nacalai Tesque, Inc.). Then, cells were grown in a humidified incubator, which was supplied with 5% CO₂ and 95% air at 37°C.

Hybridoma production

Two 6-week-old female BALB/c mice were purchased from CLEA Japan (Tokyo, Japan). Mice were housed under specific pathogen-free conditions. Then, animal experiments were conducted, following relevant guidelines and regulations to minimize animal suffering and distress in the laboratory. The Animal Care and Use Committee of Tohoku University approved animal experiments (permit number: 2019NiA-001). The mouse health was monitored daily during the entire 4-week duration of the experiment, and a reduction of more than 25% of the total body weight was denoted as a humane endpoint. Subsequently, mice were euthanized through cervical dislocation, after which respiratory and cardiac arrest were used to verify death.

We immunized two BALB/c mice with keyhole limpet hemocyanin-conjugated hCCR9 peptide $(100 \,\mu g)$: 4-TDFTSPIPNMADDYGSEST-22 + C-terminal cysteine. The administration was conducted through the intraperitoneal route with an Imject Alum (Thermo Fisher Scientific, Inc.). The procedure included three additional immunization procedures $(100 \,\mu g \text{ of peptide})$, followed by a final booster intraperitoneal injection $(100 \,\mu g \text{ of peptide})$ 2 days before its spleen cells were harvested.

The harvested spleen cells were subsequently fused with P3U1 cells, using polyethylene glycol 1500 (PEG1500; Roche Diagnostics, Indianapolis, IN). Then, hybridomas

were grown in an RPMI 1640 medium supplemented with hypoxanthine, aminopterin, and thymidine for selection (Thermo Fisher Scientific, Inc.). Cultured supernatants were finally screened using enzyme-linked immunosorbent assay (ELISA) and flow cytometric analysis.

Enzyme-linked immunosorbent assay

A synthesized hCCR9 peptide ($_4$ -TDFTSPIPNMA DDYGSEST- $_{22}$ + C-terminal cysteine) was immobilized on Nunc Maxisorp 96-well immunoplates (Thermo Fisher Scientific, Inc.) at a concentration of 1 µg/mL peptide at 37°C for 30 minutes. After washing with phosphate-buffered saline (PBS) containing 0.05% Tween20 (PBST; Nacalai Tesque, Inc.), wells were blocked with 1% bovine serum albumin (BSA)-containing PBST for 30 minutes at 37°C. Plates were then incubated with culture supernatants, followed by peroxidase-conjugated anti-mouse immunoglobulins (1:2000 diluted; Agilent Technologies, Inc., Santa Clara, CA). Enzymatic reactions were conducted using the ELISA POD substrate TMB kit (Nacalai Tesque, Inc.), followed by the measurement of the optical density at 655 nm using an iMark microplate reader (Bio-Rad Laboratories, Inc., Berkeley, CA).

Flow cytometry

Cells were washed with 0.1% BSA in PBS and treated with C₉Mab-11 or recombinant C₉Mab-1 (recC₉Mab-1)²³ for 30 minutes at 4°C. Then, cells were treated with Alexa Fluor 488-conjugated anti-mouse IgG (1:1000; Cell Signaling Technology, Inc., Danvers, MA), followed by the collection of fluorescence data, using SA3800 Cell Analyzer (Sony Corp., Tokyo, Japan).

Determination of the binding affinity by flow cytometry

CHO/hCCR9 and MOLT-4 cells were suspended in 100μ L serially diluted anti-hCCR9 mAbs, after which Alexa Fluor 488-conjugated anti-mouse IgG (1:200; Cell Signaling Technology, Inc.) was added. Fluorescence data were subsequently collected, using BD FACSLyric (BD Biosciences), followed by the calculation of the dissociation constant (K_D) by fitting the binding isotherms into the built-in one-site binding model in GraphPad PRISM 6 (GraphPad Software, Inc., La Jolla, CA).

Western blot analysis

Cell lysates (10 μ g) were boiled in sodium dodecyl sulfate sample buffer (Nacalai Tesque, Inc.). Proteins were electrophoresed on 5%-20% polyacrylamide gels (FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan) and transferred onto polyvinylidene difluoride (PVDF) membranes (Merck KGaA, Darmstadt, Germany). After blocking with 4% nonfat milk (Nacalai Tesque, Inc.), PVDF membranes were incubated with $1 \mu g/mL$ of C₉Mab-11 and $1 \mu g/mL$ of an anti-DYKDDDDK mAb (clone 1E6; FUJIFILM Wako Pure Chemical Corporation), followed by incubation with peroxidase-conjugated antimouse IgG (1:2000; Agilent Technologies, Inc.); or 1 µg/mL of an anti-isocitrate dehydrogenase 1 (IDH1) mAb (clone RcMab-1),^{24,25} followed by incubation with peroxidase-conjugated antirat IgG (1:10,000; Sigma-Aldrich Corp., St. Louis, MO). Blots were developed using Pierce[™] ECL Plus Western Blotting Substrate (Thermo Fisher Scientific, Inc.) and imaged with a Sayaca-Imager (DRC Co. Ltd., Tokyo, Japan).

Results

Establishment of anti-hCCR9 mAbs

We first immunized mice with the hCCR9 peptide (Fig. 1). Hybridomas were seeded into 96-well plates, after which ELISA was used to select reactive wells for hCCR9 peptide, followed by the selection of CHO/hCCR9 and MOLT-4 cells-reactive supernatants of hybridoma using flow cytometry. We obtained reactive supernatants in 63 of 958 wells

1. Immunization of hCCR9 peptide

FIG. 1. A schematic illustration about the production of anti-hCCR9 mAbs. The mice were intraperitoneally immunized with the hCCR9 peptide. Screening of hybridoma was then conducted by ELISA, followed by flow cytometry using hCCR9-expressing cells. ELISA, enzyme-linked immunosorbent assay; mAbs, monoclonal antibodies; hCCR9, human CCR9.

Flow cytometry

Flow cytometry was performed using C₉Mab-11 and recC₉Mab-1 against exogenously hCCR9-overexpressed CHO/hCCR9 and endogenously hCCR9-expressed MOLT-4 cells. Results showed that C₉Mab-11 recognized

FIG. 2. Flow cytometry using anti-hCCR9 mAbs. CHO/hCCR9 cells (**A**), CHO-K1 cells (**B**), and MOLT-4 cells (**C**) were treated with 0.1, 1, 10μ g/mL of C₉Mab-11 and recC₉Mab-1, followed by treatment with Alexa Fluor 488-conjugated antimouse IgG. Black line represents the negative control. CHO, Chinese hamster ovary; recC₉Mab-1, recombinant C₉Mab-1.

DEVELOPMENT OF ANTI-HCCR9 MAB

CHO/hCCR9 in a dose-dependent manner (Fig. 2A) but did not react with parental CHO-K1 cells (Fig. 2B). C₉Mab-11 reacted with MOLT-4 cells in a dose-dependent manner (Fig. 2C). Although recC₉Mab-1 reacted with both CHO/hCCR9 (Fig. 2A) and MOLT-4 (Fig. 2C) in the similar way with C₉Mab-11, the reactivity of C₉Mab-11 is more sensitive than recC₉Mab-1 at a concentration of $1 \mu g/mL$.

Determination of the binding affinity of C₉Mab-11

The binding affinity of C₉Mab-11 was assessed with CHO/hCCR9 and MOLT-4 cells using flow cytometry. Results showed that the K_D values of C₉Mab-11 for CHO/hCCR9 and MOLT-4 cells were 1.2×10^{-9} M and 4.9×10^{-10} M, respectively (Fig. 3A, B). These results indicated that C₉Mab-11 possesses high affinity for CHO/hCCR9 and MOLT-4 cells.

Western blot analyses

We investigated whether C₉Mab-11 can be used for western blot analysis by analyzing CHO-K1 and CHO/hCCR9 cell lysates. As shown in Figure 4, C₉Mab-11 could clearly detect hCCR9 as around 48-kDa band (hCCR9 + Myc-DDK tag) in CHO/hCCR9 cell lysates, whereas no band was detected in parental CHO-K1 cells. An anti-

FIG. 3. The determination of the binding affinity of C₉Mab-11. CHO/hCCR9 (**A**) or MOLT-4 (**B**) cells were suspended in 100 μ L serially diluted C₉Mab-11 (10–0.0006 μ g/mL for both cells). Then, cells were treated with Alexa Fluor 488-conjugated anti-mouse IgG. Fluorescence data were subsequently collected using BD FACSLyric, after the calculation of the dissociation constant (K_D) by GraphPad PRISM 6.

DYKDDDDK mAb (clone 1E6) was used as a positive control and could also detect a band of the same position in CHO/hCCR9 cell lysates. An anti-IDH1 mAb (clone RcMab-1) was used for internal control. These results indicate that C_9 Mab-11 can detect hCCR9 in western blot analyses.

Discussion

Using the CBIS method, we have developed many mAbs, which could recognize the biological structure and modification, including folding and glycosylation in the membrane proteins.^{16,18,20,21,23,26–32} We also developed an anti-hCCR9 mAb (clone C₉Mab-1) by using CBIS method.²¹ By evaluating the mAb epitope, we could find a better peptide immunogen for the same target protein. We, therefore, identified the epitope of C₉Mab-1 as Ile10, Pro11, Asn12, Met13, Ala14, Asp16, and Tyr17 of hCCR9 by ELISA.²² In this study, we immunized mice with the N-terminal peptide of hCCR9, including these amino acids, and obtained a highly sensitive mAb (clone C₉Mab-11).

The development of anti-GPCR antibodies has been reported to be difficult due to the complexity of its folded three-dimensional structure, the small-exposed area of extracellular epitopes, and the difficulty of purifying a functional protein as an antigen.³³ The design of antigenic epitope is important for antibody production by peptide immunization method. Thus, the combination with CBIS and peptide immunization method considered to be an effective method for efficiently obtaining highly sensitive mAbs. We successfully established anti-GPCRs mAbs against the mCCR3^{15–17} and mCCR8^{18,19} by CBIS method.

In the future study, we will try to obtain more highly sensitive anti-GPCR mAbs by using the same strategy of C₉Mab-11 development. In our previous study, numerous mAbs against membrane proteins, such as EGFR,³⁴ HER2,³⁵ HER3,³⁶ CD20,²⁶ CD44,³² CD133,³⁷ EpCAM,²⁸ TROP2,^{29,30} and podoplanin^{27,31,38-40} have been produced by using CBIS method and the epitopes of those mAbs have been already identified.⁴¹⁻⁴⁴ It is expected that more sensitive and useful mAbs will be obtained against these proteins by immunizing the identified epitopes.

The N-terminus of several GPCRs, including CCR2, CCR3, CCR5, and CXCR1 was defined as the ligand-binding region.⁴⁵ The N-terminus of CCR9 is also thought to be important for the ligand binding, because the mAb, which binds to N-terminus of CCR9, was reported to block the interaction between CCR9 and CCL25.^{46,47} The CCR9/CCL25 expression is increased in various inflammatory diseases, such as myocardial infarction, rheumatoid arthritis, IBD, asthma, and tumors^{8–10,13}; therefore, the CCR9/CCL25 interaction is expected as an ideal therapeutic target.

The C₉Mab-11 may have therapeutic effects for the aforementioned diseases. In the immune system, CCR9 plays a vital role in the regulation of T cells. T cells recruitment to the intestine and colon is triggered by CCR9 stimulation.^{48,49} A tumor acidity-responsive nanoparticle delivery system (NP-siCD47/CCL25) can release CCL25 protein and CD47 small interfering RNA in tumor. The released CCL25 promoted the infiltration of CCR9⁺CD8⁺ T cells in tumor, which resulted in inhibition of tumor growth and metastasis through a T cell-dependent immunity.⁵⁰ Therefore, CCR9⁺ T cells have positive effect for cancer treatment, through activation

CHO/hCCR9 CHO/hCCR9 CHO/hCCR9 CHO-K1 CHO-K1 CHO-K1 (kDa) (kDa) (kDa) 180 180 180 130 130 130 100 100 100 75 75 75 63 63 48 48 48 35 35 28 28 17 17 = 17 C₉Mab-11 1E6 RcMab-1

FIG. 4. The detection of hCCR9 by western blot analysis. Cell lysates of CHO-K1 and CHO/hCCR9 (10 µg) were electrophoresed and transferred onto PVDF membranes. The membranes were incubated with 1 µg/mL of C₉Mab-11, 1 µg/mL of an anti-DYKDDDDK mAb (clone 1E6), and 1 µg/mL of an anti-IDH1 mAb (clone RcMab-1) and subsequently with peroxidase-conjugated anti-mouse or anti-rat immunoglobulins. IDH1, isocitrate dehydrogenase 1; PVDF, polyvinylidene difluoride.

of tumor immunity. Recently, it has shown that chimeric antigen receptor T cells targeting CCR9 possess antileukemic activity against T-ALL in vitro and in vivo.⁵¹ C₉Mab-11 is expected to be effective in cancer immunotherapy.

C₉Mab-11 is applicable to various experiments, such as flow cytometry, ELISA, and western blot analysis. Therefore, C₉Mab-11 will also contribute to further research related to CCR9 functions.

Author Disclosure Statement

No competing financial interests exist.

Funding Information

This research was supported in part by Japan Agency for Medical Research and Development (AMED) under grant nos. JP22ama121008 (to Y.K.), JP22am0401013 (to Y.K.), JP22bm1004001 (to Y.K.), JP22ck0106730 (to Y.K.), and JP21am0101078 (to Y.K.).

References

- 1. Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol 2017;17:559-572; doi: 10.1038/nri.2017.49
- 2. Ozga AJ, Chow MT, Luster AD. Chemokines and the immune response to cancer. Immunity 2021;54:859-874; doi: 10.1016/j.immuni.2021.01.012
- 3. Tu Z, Xiao R, Xiong J, et al. CCR9 in cancer: Oncogenic role and therapeutic targeting. J Hematol Oncol 2016;9:10; doi: 10.1186/s13045-016-0236-7

- 4. Wurbel MA, Malissen B, Campbell JJ. Complex regulation of CCR9 at multiple discrete stages of T cell development. Eur J Immunol 2006;36:73-81; doi: 10.1002/eji.200535203
- 5. Wurbel MA, Philippe JM, Nguyen C, et al. The chemokine TECK is expressed by thymic and intestinal epithelial cells and attracts double- and single-positive thymocytes expressing the TECK receptor CCR9. Eur J Immunol 2000; 30:262-271; doi: 10.1002/1521-4141(200001)30:1 <262:: Aid-immu262>3.0.Co;2-0
- 6. Campbell DJ, Butcher EC. Intestinal attraction: CCL25 functions in effector lymphocyte recruitment to the small intestine. J Clin Invest 2002;110:1079-1081; doi: 10.1172/ jci16946
- 7. Wu X, Sun M, Yang Z, et al. The roles of CCR9/CCL25 in inflammation and inflammation-associated diseases. Front Cell Dev Biol 2021;9:686548; doi: 10.3389/fcell.2021.686548
- 8. Huang Y, Wang D, Wang X, et al. Abrogation of CC chemokine receptor 9 ameliorates ventricular remodeling in mice after myocardial infarction. Sci Rep 2016;6:32660; doi: 10.1038/srep32660
- 9. Nakamoto N, Ebinuma H, Kanai T, et al. CCR9+ macrophages are required for acute liver inflammation in mouse models of hepatitis. Gastroenterology 2012;142:366-376; doi: 10.1053/j.gastro.2011.10.039
- 10. Wurbel MA, McIntire MG, Dwyer P, et al. CCL25/CCR9 interactions regulate large intestinal inflammation in a murine model of acute colitis. PLoS One 2011;6:e16442; doi: 10.1371/journal.pone.0016442
- 11. Walters MJ, Wang Y, Lai N, et al. Characterization of CCX282-B, an orally bioavailable antagonist of the CCR9 chemokine receptor, for treatment of inflammatory bowel disease. J Pharmacol Exp Ther 2010;335:61-69; doi: 10.1124/jpet.110.169714

308

- Zhang J, Romero J, Chan A, et al. Biarylsulfonamide CCR9 inhibitors for inflammatory bowel disease. Bioorg Med Chem Lett 2015;25:3661–3664; doi: 10.1016/j.bmcl.2015.06 .046
- Qiuping Z, Qun L, Chunsong H, et al. Selectively increased expression and functions of chemokine receptor CCR9 on CD4+ T cells from patients with T-cell lineage acute lymphocytic leukemia. Cancer Res 2003;63:6469–6477.
- McGuire HM, Vogelzang A, Ma CS, et al. A subset of interleukin-21+ chemokine receptor CCR9+ T helper cells target accessory organs of the digestive system in autoimmunity. Immunity 2011;34:602–615; doi: 10.1016/j.immuni .2011.01.021
- Asano T, Suzuki H, Goto N, et al. Establishment of novel anti-mouse CCR3 monoclonal antibodies (C(3)Mab-6 and C(3)Mab-7) by N-terminal peptide immunization. Monoclon Antib Immunodiagn Immunother 2022;41:94–100; doi: 10.1089/mab.2021.0065
- Asano T, Suzuki H, Tanaka T, et al. C(3)Mab-3: A monoclonal antibody for mouse CC chemokine receptor 3 for flow cytometry. Monoclon Antib Immunodiagn Immunother 2022;41:74–79; doi: 10.1089/mab.2021.0062
- Saito M, Harigae Y, Li G, et al. C(3)Mab-2: An anti-mouse CCR3 monoclonal antibody for immunocytochemistry. Monoclon Antib Immunodiagn Immunother 2022;41:45– 49; doi: 10.1089/mab.2021.0050
- Saito M, Suzuki H, Tanaka T, et al. Development of an anti-mouse CCR8 monoclonal antibody (C(8)Mab-1) for flow cytometry and immunocytochemistry. Monoclon Antib Immunodiagn Immunother 2022; doi: 10.1089/mab .2021.0069
- Saito M, Tanaka T, Asano T, et al. C(8)Mab-2: An anti-mouse C-C motif chemokine receptor 8 monoclonal antibody for immunocytochemistry. Monoclon Antib Immunodiagn Immunother 2022;41:115–119; doi: 10.1089/mab.2021.0045
- Suzuki H, Saito M, Asano T, et al. C(8)Mab-3: An antimouse CCR8 monoclonal antibody for immunocytochemistry. Monoclon Antib Immunodiagn Immunother 2022;41: 110–114; doi: 10.1089/mab.2022.0002
- Nanamiya R, Takei J, Asano T, et al. Development of antihuman CC chemokine receptor 9 monoclonal antibodies for flow cytometry. Monoclon Antib Immunodiagn Immunother 2021;40:101–106; doi: 10.1089/mab.2021.0007
- 22. Takei J, Asano T, Li G, et al. Epitope mapping of an antihuman CCR9 monoclonal antibody (C(9)Mab-1) using enzyme-linked immunosorbent assay. Monoclon Antib Immunodiagn Immunother 2021;40:239–242; doi: 10.1089/ mab.2021.0037
- Saito M, Suzuki H, Harigae Y, et al. C(9)Mab-1: An antimouse CCR9 monoclonal antibody for immunocytochemistry. Monoclon Antib Immunodiagn Immunother 2022;41: 120–124; doi: 10.1089/mab.2021.0052
- Kato Y. Specific monoclonal antibodies against IDH1/2 mutations as diagnostic tools for gliomas. Brain Tumor Pathol 2015;32:3–11; doi: 10.1007/s10014-014-0202-4
- 25. Ikota H, Nobusawa S, Arai H, et al. Evaluation of IDH1 status in diffusely infiltrating gliomas by immunohistochemistry using anti-mutant and wild type IDH1 antibodies. Brain Tumor Pathol 2015;32:237–244; doi: 10.1007/s10014-015-0222-8
- Furusawa Y, Kaneko MK, Kato Y. Establishment of C(20)Mab-11, a novel anti-CD20 monoclonal antibody, for the detection of B cells. Oncol Lett 2020;20:1961–1967; doi: 10.3892/ol.2020.11753

- 27. Hosono H, Asano T, Takei J, et al. Development of an antielephant podoplanin monoclonal antibody PMab-265 for flow cytometry. Monoclon Antib Immunodiagn Immunother 2021;40:141–145; doi: 10.1089/mab.2021.0015
- 28. Li G, Suzuki H, Asano T, et al. Development of a novel anti-EpCAM monoclonal antibody for various applications. Antibodies (Basel) 2022;11; doi: 10.3390/antib11020041
- 29. Sayama Y, Kaneko MK, Kato Y. Development and characterization of TrMab-6, a novel anti-TROP2 monoclonal antibody for antigen detection in breast cancer. Mol Med Rep 2021;23; doi: 10.3892/mmr.2020.11731
- Sayama Y, Kaneko MK, Takei J, et al. Establishment of a novel anti-TROP2 monoclonal antibody TrMab-29 for immunohistochemical analysis. Biochem Biophys Rep 2021;25:100902; doi: 10.1016/j.bbrep.2020.100902
- Tanaka T, Asano T, Sano M, et al. Development of monoclonal antibody PMab-269 against California Sea Lion Podoplanin. Monoclon Antib Immunodiagn Immunother 2021;40:124–133; doi: 10.1089/mab.2021.0011
- 32. Yamada S, Itai S, Nakamura T, et al. Detection of high CD44 expression in oral cancers using the novel monoclonal antibody, C(44)Mab-5. Biochem Biophys Rep 2018; 14:64–68; doi: 10.1016/j.bbrep.2018.03.007
- Jo M, Jung ST. Engineering therapeutic antibodies targeting G-protein-coupled receptors. Exp Mol Med 2016;48: e207; doi: 10.1038/emm.2015.105
- 34. Itai S, Kaneko MK, Fujii Y, et al. Development of EMab-51, a sensitive and specific anti-epidermal growth factor receptor monoclonal antibody in flow cytometry, western blot, and immunohistochemistry. Monoclon Antib Immunodiagn Immunother 2017;36:214–219; doi: 10.1089/mab.2017.0028
- Kaneko MK, Yamada S, Itai S, et al. Development of an anti-HER2 monoclonal antibody H2Mab-139 against colon cancer. Monoclon Antib Immunodiagn Immunother 2018; 37:59–62; doi: 10.1089/mab.2017.0052
- Asano T, Ohishi T, Takei J, et al. Anti-HER3 monoclonal antibody exerts antitumor activity in a mouse model of colorectal adenocarcinoma. Oncol Rep 2021;46; doi: 10.3892/or.2021.8124
- Itai S, Fujii Y, Nakamura T, et al. Establishment of CMab-43, a sensitive and specific anti-CD133 monoclonal antibody, for immunohistochemistry. Monoclon Antib Immunodiagn Immunother 2017;36:231–235; doi: 10.1089/mab.2017.0031
- Yamada S, Ogasawara S, Kaneko MK, et al. LpMab-23: A cancer-specific monoclonal antibody against human podoplanin. Monoclon Antib Immunodiagn Immunother 2017; 36:72–76; doi: 10.1089/mab.2017.0001
- Yamada S, Itai S, Nakamura T, et al. PMab-52: Specific and sensitive monoclonal antibody against cat podoplanin for immunohistochemistry. Monoclon Antib Immunodiagn Immunother 2017;36:224–230; doi: 10.1089/mab.2017.0027
- 40. Furusawa Y, Takei J, Sayama Y, et al. Development of an anti-bear podoplanin monoclonal antibody PMab-247 for immunohistochemical analysis. Biochem Biophys Rep 2019;18:100644; doi: 10.1016/j.bbrep.2019.100644
- 41. Takei J, Asano T, Suzuki H, et al. Epitope mapping of the anti-CD44 monoclonal antibody (C(44)Mab-46) using alanine-scanning mutagenesis and surface plasmon resonance. Monoclon Antib Immunodiagn Immunother 2021; 40:219–226; doi: 10.1089/mab.2021.0028
- Kaneko MK, Oki H, Hozumi Y, et al. Monoclonal antibody LpMab-9 recognizes O-glycosylated N-terminus of human podoplanin. Monoclon Antib Immunodiagn Immunother 2015;34:310–317; doi: 10.1089/mab.2015.0022

- Tanaka T, Asano T, Sano M, et al. Epitope mapping of the anti-California Sea Lion podoplanin monoclonal antibody PMab-269 using alanine-scanning mutagenesis and ELISA. Monoclon Antib Immunodiagn Immunother 2021;40:196– 200; doi: 10.1089/mab.2021.0017
- 44. Asano T, Takei J, Suzuki H, et al. Epitope mapping of an anti-HER2 monoclonal antibody (H(2)Mab-181) using enzyme-linked immunosorbent assay. Monoclon Antib Immunodiagn Immunother 2021;40:255–260; doi: 10.1089/ mab.2021.0029
- Allen SJ, Crown SE, Handel TM. Chemokine: Receptor structure, interactions, and antagonism. Annu Rev Immunol 2007;25:787–820; doi: 10.1146/annurev.immunol.24 .021605.090529
- 46. Zabel BA, Agace WW, Campbell JJ, et al. Human G proteincoupled receptor GPR-9-6/CC chemokine receptor 9 is selectively expressed on intestinal homing T lymphocytes, mucosal lymphocytes, and thymocytes and is required for thymus-expressed chemokine-mediated chemotaxis. J Exp Med 1999;190:1241–1256; doi: 10.1084/jem.190.9.1241
- 47. Chamorro S, Vela M, Franco-Villanueva A, et al. Antitumor effects of a monoclonal antibody to human CCR9 in leukemia cell xenografts. MAbs 2014;6:1000–1012; doi: 10.4161/mabs.29063
- 48. Tubo NJ, Wurbel MA, Charvat TT, et al. A systemicallyadministered small molecule antagonist of CCR9 acts as a tissue-selective inhibitor of lymphocyte trafficking. PLoS One 2012;7:e50498; doi: 10.1371/journal.pone.0050498

- 49. Greis C, Rasuly Z, Janosi RA, et al. Intestinal T lymphocyte homing is associated with gastric emptying and epithelial barrier function in critically ill: A prospective observational study. Crit Care 2017;21:70; doi: 10.1186/ s13054-017-1654-9
- Chen H, Cong X, Wu C, et al. Intratumoral delivery of CCL25 enhances immunotherapy against triple-negative breast cancer by recruiting CCR9(+) T cells. Sci Adv 2020; 6:eaax4690; doi: 10.1126/sciadv.aax4690
- 51. Maciocia PM, Wawrzyniecka PA, Maciocia NC, et al. Anti-CCR9 chimeric antigen receptor T cells for T-cell acute lymphoblastic leukemia. Blood 2022;140:25–37; doi: 10.1182/blood.2021013648

Address correspondence to: Yukinari Kato Department of Molecular Pharmacology Tohoku University Graduate School of Medicine 2-1, Seiryo-machi, Aoba-ku Sendai 980-8575 Japan

E-mail: yukinari.kato.e6@tohoku.ac.jp

Received: August 4, 2022 Accepted: September 30, 2022