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Chinese hamster (Cricetulus griseus) and golden hamster (Mesocricetus auratus) are important animal models
of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, which affect several organs,
including respiratory tract, lung, and kidney. Podoplanin (PDPN) is a marker of lung type I alveolar cells,
kidney podocytes, and lymphatic endothelial cells. The development of anti-PDPN monoclonal antibodies
(mAbs) for these animals is essential to evaluate the pathogenesis by SARS-CoV-2 infections. Using the Cell-
Based Immunization and Screening method, we previously developed an anti-Chinese hamster PDPN
(ChamPDPN) mAb, PMab-281 (mouse IgG3, kappa), and further changed its subclass into IgG2a (281-mG2a-f),
both of which can recognize not only ChamPDPN but also golden hamster PDPN (GhamPDPN) by flow
cytometry and immunohistochemistry. In this study, we examined the critical epitope of 281-mG2a-f, using
enzyme-linked immunosorbent assay (ELISA) with synthesized peptides. First, we performed ELISA with
peptides derived from ChamPDPN and GhamPDPN extracellular domain, and found that 281-mG2a-f reacted
with the peptides, which commonly possess the KIPFEELxT sequence. Next, we analyzed the reaction with the
alanine-substituted mutants, and revealed that 281-mG2a-f did not recognize the alanine-substituted peptides of
I75A, F77A, and E79A of ChamPDPN. Furthermore, these peptides could not inhibit the recognition of 281-
mG2a-f to ChamPDPN-expressing cells by flow cytometry. The results indicate that the binding epitope of 281-
mG2a-f includes Ile75, Phe77, and Glu79 of ChamPDPN, which are shared with GhamPDPN.
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Introduction

P odoplanin (PDPN) is a type I transmembrane mucin-
like glycoprotein that plays critical roles in tumor pro-

gression(1) as well as normal development including lung,(2)

kidney,(3) and lymphatic vessels.(4) The N-terminal ex-
tracellular domain has a repeat sequence named platelet
aggregation-stimulating (PLAG)1 to PLAG3 domains(5) that
promote platelet aggregation through interaction with a
platelet receptor, C-type lectin-like receptor 2 (CLEC-2).(6,7)

Furthermore, several PLAG-like domains (PLDs, one of
which is named PLAG4 domain) with similar sequences,
were identified.(8)

Furthermore, PDPN regulates the signal transduction
through its cytoplasmic tail, which is involved in cell prolif-
eration, migration, invasion, epithelial-to-mesenchymal tran-

sition, and stemness.(9) PDPN expression is also elevated
in tumor stroma including cancer-associated fibroblasts
(CAFs)(10) and lymphocytes.(11) CAFs remodel the extra-
cellular matrix and the play a critical role in the formation of
immunosuppressive tumor microenvironment.(12,13)

PDPN is also important as a marker of lung type I alveolar
cells, kidney podocytes, and lymphatic endothelial cells.(1)

We have developed anti-PDPN monoclonal antibodies (mAbs)
against 17 species,(14–30) which are useful for flow cytome-
try and immunohistochemistry. These mAbs are expected to
contribute not only to the research of each animal but also to
pathogenic diagnosis.

Using the Cell-Based Immunization and Screening (CBIS)
method,(14,15,31–45) we recently developed anti-PDPN mAbs
against Chinese hamster (Cham)/golden hamster (Gham)(46)

and ferret,(47) which are small animal models of severe acute
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respiratory syndrome coronavirus 2 (SARS-CoV-2) infec-
tions.(48,49) These mAbs will contribute to the morphological
alterations and evaluation of the pathogenesis of SARS-CoV-
2-infected lung type I alveolar cells and kidney podocytes.
In this study, we performed the epitope mapping using
enzyme-linked immunosorbent assay (ELISA) to clarify
further characteristics of an anti-Cham/GhamPDPN mAb,
281-mG2a-f.

Materials and Methods

Peptides

ChamPDPN (accession no.: AB205160) and GhamPDPN
(accession no.: XM_021233536) peptides (Table 1) and 20
alanine-substituted peptides (Table 2) were synthesized by
utilizing PEPScreen (Sigma-Aldrich Corp., St. Louis, MO).

ELISA

Synthesized ChamPDPN and GhamPDPN peptides
(Tables 1 and 2) were immobilized on Nunc Maxisorp 96-
well immunoplates (Thermo Fisher Scientific, Inc., Waltham,
MA) at a concentration of 10 lg/mL for 30 minutes at 37�C.
After washing with phosphate-buffered saline (PBS) con-
taining 0.05% Tween20 (PBST; Nacalai Tesque, Inc., Kyoto,
Japan), wells were blocked with 1% bovine serum albumin
(BSA)-containing PBST for 30 minutes at 37�C.

The plates were incubated with 1 lg/mL of 281-mG2a-f,
followed by peroxidase-conjugated anti-mouse immuno-
globulins (1:2000 diluted; Agilent Technologies, Inc., Santa
Clara, CA). Enzymatic reactions were performed using the

ELISA POD Substrate TMB Kit (Nacalai Tesque, Inc.).
Optical density was measured at 655 nm using an iMark mi-
croplate reader (Bio-Rad Laboratories, Inc., Berkeley, CA).

Flow cytometry

2 · RIEDL-ChamPDPN-overexpressed Chinese hamster
ovary-K1 (CHO/ChamPDPN)(46) was harvested after a brief
exposure to 0.25% trypsin in 1 mM ethylenediaminete-
traacetic acid (Nacalai Tesque, Inc.) and washed with 0.1%
BSA (Nacalai Tesque, Inc.) in PBS (Nacalai Tesque, Inc.).
The 281-mG2a-f (0.01 lg/mL) was incubated with each
peptide (10 lg/mL) for 30 minutes at 4�C. CHO/ChamPDPN
cells were treated with 281-mG2a-f + each peptide, and fur-
ther treated with Alexa Fluor 488-conjugated anti-mouse IgG
(1:1000). Fluorescence data were collected using the SA3800
Cell Analyzer (Sony Biotechnology Corp., Tokyo, Japan).

Results

Epitope mapping of 281-mG2a-f using deletion mutants

We previously established an anti-ChamPDPN mAb
(PMab-281, mouse IgG3, kappa) by the CBIS method.(46) The
subclass of PMab-281 was converted from IgG3 to IgG2a

because the mouse IgG3 subclass is easy to aggregate. In
addition, a defucosylated anti-ChamPDPN mAb (281-mG2a-
f) was produced using BINDS-09 cells (FUT8-deficient
ExpiCHO-S cells(50,51)). We found that 281-mG2a-f could
recognize both ChamPDPN and GhamPDPN by flow cy-
tometry and immunohistochemistry.(46) To reveal the binding
epitope of 281-mG2a-f, we synthesized 22 peptides (Table 1),
which consist of 20 amino acids (aa) of extracellular domain
of ChamPDPN and GhamPDPN, and performed ELISA. As
shown in Figure 1A, 281-mG2a-f recognized both the 63–82
aa (TGKAPLVPTHTKIPFEELPT) and the 73–92 aa

Table 1. Epitope Mapping of 281-mG2a
-f Using

Deletion Mutants

Peptides Sequences 281-mG2a-f

ChamPDPN
23–42 GAIGRLEDDIVTPGARDGMV -
33–52 VTPGARDGMVTPGLEDRIGT -
43–62 TPGLEDRIGTTGATEVLNES -
53–72 TGATEVLNESTGKAPLVPTH -
63–82 TGKAPLVPTHTKIPFEELPT +++
73–92 TKIPFEELPTPGISDHDGEE +++
83–102 PGISDHDGEEHTSTTTVRMV -
93–112 HTSTTTVRMVTSHSADKETS -
103–122 TSHSADKETSHPNRDNTADE -
113–132 HPNRDNTADETQTTDKRDGL -
123–135 TQTTDKRDGLAVV -

GhamPDPN
48–67 ALLKGLEDDIVTPGARDGMV -
58–77 VTPGARDGMVTPGLEDRTTT -
68–87 TPGLEDRTTTTGGLNEPTGK -
78–97 TGGLNEPTGKAPLVPTHAKI -
88–107 APLVPTHAKIPFEELSTPGV +++
98–117 PFEELSTPGVSDHDDKEHKS -
108–127 SDHDDKEHKSTTTVRMVTSH -
118–137 TTTVRMVTSHSSDKETSHPN -
128–147 SSDKETSHPNIDNTADETQT -
138–157 IDNTADETQTTDKRDGLAVV -
148–157 TDKRDGLAVV -

+++, OD655 S 0.3; -, OD655 < 0.1.
ChamPDPN, Chinese hamster PDPN; GhamPDPN, golden ham-

ster PDPN; PDPN, podoplanin.

Table 2. Identification of the 281-mG2a
-f Epitope

Using Alanine-Substituted Chinese Hamster

Podoplanin Peptides

Peptides Sequences 281-mG2a-f

73–92 TKIPFEELPTPGISDHDGEE +++
T73A AKIPFEELPTPGISDHDGEE +++
K74A TAIPFEELPTPGISDHDGEE +++
I75A TKAPFEELPTPGISDHDGEE -
P76A TKIAFEELPTPGISDHDGEE +++
F77A TKIPAEELPTPGISDHDGEE -
E78A TKIPFAELPTPGISDHDGEE +++
E79A TKIPFEALPTPGISDHDGEE -
L80A TKIPFEEAPTPGISDHDGEE +++
P81A TKIPFEELATPGISDHDGEE +++
T82A TKIPFEELPAPGISDHDGEE +++
P83A TKIPFEELPTAGISDHDGEE +++
G84A TKIPFEELPTPAISDHDGEE +++
I85A TKIPFEELPTPGASDHDGEE +++
S86A TKIPFEELPTPGIADHDGEE +++
D87A TKIPFEELPTPGISAHDGEE +++
H88A TKIPFEELPTPGISDADGEE +++
D89A TKIPFEELPTPGISDHAGEE +++
G90A TKIPFEELPTPGISDHDAEE +++
E91A TKIPFEELPTPGISDHDGAE +++
E92A TKIPFEELPTPGISDHDGEA +++

+++, OD655 S 0.3; -, OD655 < 0.1.
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(TKIPFEELPTPGISDHDGEE) sequences of ChamPDPN.
Furthermore, 281-mG2a-f recognized the 88–107 aa
(APLVPTHAKIPFEELSTPGV) sequence of GhamPDPN.
Compared with the sequences, the epitope of 281-mG2a-f
was suggested to exist in the 74–82 aa (KIPFEELPT) of
ChamPDPN (Fig. 1B).

Epitope mapping of 281-mG2a-f using
alanine-substituted PDPN peptides

Then, we synthesized 20 alanine-substituted peptides de-
rived from the 73–92 aa peptide of ChamPDPN (Table 2).
The 281-mG2a-f exhibited reaction with T73A, K74A, P76A,
E78A, L80A, P81A, T82A, P83A, G84A, I85A, S86A,
D87A, H88A, D89A, G90A, E91A, E92A, and wild-type
(WT, 73–92 aa) (Fig. 2A). In contrast, 281-mG2a-f did not
react with I75A, F77A, and E79A (Fig. 2A), indicating that
Ile75, Phe77, and Glu79, which are shared with GhamPDPN,
are included in the critical epitope of 281-mG2a-f. The results
are summarized in Figure 2B.

Flow cytometry using 281-mG2a-f
with alanine-substituted PDPN peptide

We performed a blocking assay using flow cytometry. As
shown in Figure 3, 281-mG2a-f reacted with the CHO/
ChamPDPN cells. This reaction was almost completely
neutralized by WT and L80A, partially inhibited by K74A
and P76A, and slightly inhibited by E78A. In contrast, I75A,
F77A, and E79A did not block the reaction of 281-mG2a-f

with CHO/ChamPDPN. These results confirm that Ile75,
Phe77, and Glu79 of ChamPDPN are critical for 281-mG2a-f
detection.

Discussion

PDPN possesses three tandem repeats of the ‘‘EDxxVTPG’’
sequences, which were defined as PLAG1, PLAG2, and
PLAG3 domains in the N-terminus.(5) Furthermore, there are
several PLDs of the ‘‘E(D/E)xx(T/S)xx’’ sequences in the
central part of PDPN.(8) In this study, we determined the
critical epitope of 281-mG2a-f as Ile75, Phe77, and Glu79 of
ChamPDPN (Fig. 2B). Glu79 is included in the first PLD
(aa 78–82).

Since PLDs are reportedly important for the PDPN–
CLEC-2 interaction and induction of platelet aggregation,(8)

further studies are needed to investigate the role of the first
PLD for platelet aggregation and the neutralizing activity of
281-mG2a-f. The O-glycosylation of Thr in the PLAG3 or
PLD has been reported to be essential for PDPN-induced
platelet aggregation.(8,52) However, Ser/Thr residues are not
included in 281-mG2a-f epitope, indicating that 281-mG2a-f
was not categorized into GpMabs.(53)

We have not examined the crossreactivity of 281-mG2a-f
with other species excluding Gham. Therefore, we searched
the conservation of ‘‘IPFEE’’ sequence to other species
PDPN using standard protein BLAST (the Basic Local

FIG. 1. Determination of the 281-mG2a-f epitope for
ChamPDPN and GhamPDPN by ELISA using deletion
mutants. (A) Synthesized peptides of ChamPDPN and
GhamPDPN were immobilized on immunoplates. The plates
were incubated with 281-mG2a-f (1 mg/mL), followed by
incubation with peroxidase-conjugated anti-mouse immu-
noglobulins. (B) Sequence alignment of reacted peptides.
ChamPDPN, Chinese hamster PDPN; ELISA, enzyme-
linked immunosorbent assay; GhamPDPN, golden hamster
PDPN; PDPN, podoplanin.

FIG. 2. Determination of the 281-mG2a-f epitope of
ChamPDPN by ELISA using alanine-substituted PDPN pep-
tides. (A) The alanine-substituted ChamPDPN peptides were
immobilized on immunoplates. The plates were incubated with
281-mG2a-f (1mg/mL), followed by peroxidase-conjugated
anti-mouse immunoglobulins. (B) Schematic illustration of
ChamPDPN and the 281-mG2a-f epitope. The 281-mG2a-f
epitope involves Ile75, Phe77, and Glu79 of ChamPDPN.
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Alignment Search Tool, NCBI). Only creeping vole (Mi-
crotus oregoni) possesses similar ‘‘IPFED’’ sequence, sug-
gesting the crossreactivity by 281-mG2a-f.

In animal models of SARS-CoV-2, Ghams exhibit
similar pathogenesis and transmissibility found in humans
with SARS-CoV-2 infections.(54) The disease severity is
known to be typically lower in pediatric patients than in
adults, particularly the elderly patients.(55) Angiotensin-
converting enzyme 2 (ACE2) serves as the entry receptor
for SARS-CoV-2.(56) Age-dependent upregulation of
ACE2 in PDPN-positive lung type I alveolar cells was
reported in mouse and human.(57) The 281-mG2a-f will
contribute to the analysis to detect PDPN-positive lung
type I alveolar cells in Gham and could provide an im-
portant information of the age-related correlation of dis-
ease severity in the animal model.
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