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TgMab-2: An Anti-human T Cell Immunoglobulin
and Immunoreceptor Tyrosine-Based Inhibitory Motif

Domain Monoclonal Antibody for Immunocytochemistry

Masaki Saito,1 Hiroyuki Suzuki,1 Mika K. Kaneko,2 and Yukinari Kato1,2

T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) is one of the
immune checkpoint molecules. TIGIT is expressed in T or natural killer (NK) cells and is upregulated in several
cancers. Because TIGIT suppresses the antitumor activity of the T or NK cells by binding to its ligand, such as
CD155, CD112, and CD113, TIGIT can be a molecular marker or a therapeutic target for cancer immuno-
therapy. We previously developed an anti-human TIGIT (hTIGIT) monoclonal antibody (mAb; clone TgMab-2;
mouse IgG1, kappa) by the Cell-Based Immunization and Screening method. TgMab-2 binds to hTIGIT with
high binding affinity in flow cytometry. In this study, we investigated the availability of TgMab-2 and its
recombinant mAb (recTgMab-2) in immunocytochemistry. We found that TgMab-2 and recTgMab-2 bind to
hTIGIT-overexpressed Chinese hamster ovary (CHO)-K1 cells, but not parental CHO-K1 cells, indicating that
both mAbs specifically recognize hTIGIT. Furthermore, both mAbs recognized endogenous hTIGIT expressed
in human NK cells in immunocytochemistry. These results demonstrate that TgMab-2 and recTgMab-2 are
applicable for immunocytochemistry against hTIGIT.

Keywords: TIGIT, TgMab-2, monoclonal antibody, immunocytochemistry

Introduction

C D4+ T, CD8+ T, and natural killer (NK) cells suppress
tumor progression by antitumor immunity.(1) Tumor

cells, in turn, escape from the immune cell recognition by
activating immune checkpoint molecules, including cyto-
toxic T lymphocyte-associated antigen 4 (CTLA-4) and
programmed cell death 1 (PD-1) and by suppressing the
functions of T or NK cells. Specific monoclonal antibodies
(mAbs) against CTLA-4, PD-1, and PD-1 ligand 1 (PD-L1)
could block their function, and have provided great benefits
in improving the prognosis of cancer patients.(2) However,
due to the limited number of patients who respond to those
mAbs, the development of novel mAbs against other immune
checkpoint molecules has been desired.(3)

T cell immunoglobulin and immunoreceptor tyrosine-
based inhibitory motif domain (TIGIT) is another immune
checkpoint molecule, which is expressed in CD4+ T, CD8+ T,
NK, and regulatory T (Treg) cells.(4,5) TIGIT is a type 1

transmembrane protein, which possesses an extracellular im-
munoglobulin domain and an intracellular immunoreceptor
tyrosine-based inhibitory motif domain.(4) CD155 (poliovirus
receptor [PVR]), CD112 (PVR-like protein 2), and CD113
(PVR-like protein 3) are identified as TIGIT ligands that are
expressed in antigen-presenting cells and cancer cells.(6)

TIGIT interacts with CD155, CD112, and CD113 with
high, moderate, and low affinities, respectively.(4,5) The bind-
ing of CD155 to TIGIT suppresses the activity of NK cells
through the phosphorylation of Y225 on the immunoreceptor
tail tyrosine-like motif of TIGIT, the recruitment of a cyto-
solic adaptor protein Grb2 and SH2 domain-containing
tyrosine phosphatase-1, and the subsequent termination of
phosphatidylinositol 3-kinase and mitogen-activated protein
kinase signaling.(7)

Elevated expression of TIGIT and its ligands is identified
in tumor-infiltrating lymphocytes.(6) For example, TIGIT
is increased in Tregs of melanoma patients(8) and CD8+ T
cells of gastric cancer patients.(9) TIGIT is also increased in
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tumor-infiltrating NK cells or CD8+ T cells in mouse xeno-
graft models of colorectal cancer, breast cancer, melanoma, and
fibrosarcoma.(10) In addition, CD155 is upregulated in mela-
noma, colorectal, gastric, and pancreatic carcinomas,(9,11–13)

whereas CD112 is upregulated in breast, gastric, and ovarian
carcinomas.(9,14)

These reports suggest that TIGIT can be a novel molecular
marker or a target molecule for cancer immunotherapy.
Moreover, despite advances in research of physiological
functions of TIGIT, the regulatory mechanisms of TIGIT
in the TIGIT-overexpressing CD8+ T and NK cells have
remained unclear. Thus, the development of novel mAbs
against TIGIT has been required.

We have developed mAbs against membrane proteins
by the Cell-Based Immunization and Screening (CBIS)
method, including C–C motif chemokine receptor 3
(CCR3),(15,16) CCR8,(17–19) CCR9,(20) CD10,(21,22) CD19,(23)

CD20,(24,25) CD44,(26) CD133,(27) EpCAM,(28,29)

HER3,(30) KLRG1,(15) PD-L1,(31) podoplanin,(32–46) and
TROP2.(47,48) We have also established an anti-human TIGIT
(hTIGIT) mAb (clone TgMab-2; mouse IgG1, kappa).(49)

TgMab-2 reacts to hTIGIT with high binding affinity in flow
cytometry.(49) In this study, we investigated whether TgMab-2
and its recombinant mAb (recTgMab-2) could recognize en-
dogenous and exogenous hTIGIT in immunocytochemistry.

Materials and Methods

Cell lines

Chinese hamster ovary (CHO)-K1 was obtained from
the American Type Culture Collection (Manassas, VA).
hTIGIT-overexpressed CHO-K1 (CHO/hTIGIT) was estab-
lished in our previous report.(49) CHO-K1 and CHO/hTIGIT
were cultured in Roswell Park Memorial Institute 1640
medium (Nacalai Tesque, Inc., Kyoto, Japan), supplemented
with 10% fetal bovine serum (Thermo Fisher Scientific, Inc.,
Waltham, MA), 0.25 lg/mL of amphotericin B, 100 U/mL of
penicillin, and 100 lg/mL of streptomycin (Nacalai Tesque,
Inc.). The cells were maintained in a humidified atmosphere
under 5% CO2 and 95% air condition at 37�C. Human NK
cells (donor lot. 4022602, purity >70%) were purchased from
Takara Bio (Shiga, Japan).

Antibodies

TgMab-2 was developed in our previous report.(49)

Recombinant TgMab-2 (recTgMab-2) was generated by
subcloning VH and CH of complementary DNAs (cDNAs) of
TgMab-2 into the pCAG-Neo vector, along with VL and CL

cDNAs of TgMab-2 into the pCAG-Ble vector (FUJIFILM
Wako Pure Chemical Corporation, Osaka, Japan), respecti-
vely. An anti-hTIGIT mAb (clone A15153G) was purchased
from BioLegend (San Diego, CA). Alexa Fluor 488-
conjugated anti-mouse IgG was purchased from Cell Sig-
naling Technology, Inc. (Danvers, MA).

Immunocytochemistry of adherent cells

CHO-K1 and CHO/hTIGIT were seeded on acid-wash
coverslips. They were fixed with 4% paraformaldehyde (PFA)
contained in phosphate-buffered saline (PBS) for 10 min and
quenched with 50 mM NH4Cl contained in PBS supple-
mented with 0.2 mM Ca2+ and 2 mM Mg2+ (PBSc/m) for

10 min. Then, the cells were blocked in BPA buffer (PBSc/m
supplemented with 0.5% bovine serum albumin and 0.02%
sodium azide) for 30 min, and incubated with primary anti-
bodies (10 lg/mL in BPA buffer) for 1 h and Alexa Fluor
488-conjugated anti-mouse IgG (1:400 dilution in BPA
buffer) for 45 min.

Finally, the cells were mounted using ProLong Glass
antifade mounting medium (Thermo Fisher Scientific,
Inc.). The cell nuclei were stained with 4¢,6-diamidino-2-
phenylindole (DAPI; Thermo Fisher Scientific, Inc.). Fluo-
rescence images were acquired on a BZ-X800 digital
microscope (Keyence, Osaka, Japan) with a 40 · objective.

Immunocytochemistry of suspension cells

The suspension of NK cells was centrifuged at 270 · g for
5 min. The obtained cell pellet was suspended in 4% PFA in
PBS for 10 min, followed by 50 mM NH4Cl in PBSc/m for
10 min. After centrifugation, NK cells were suspended in
BPA buffer for 30 min, primary antibodies (10 mg/mL in BPA
buffer) for 2 h, and Alexa Fluor 488-conjugated anti-
mouse IgG (1:400 dilution BPA buffer) for 45 min. Subse-
quently, NK cells were suspended in ProLong Glass antifade
mounting medium and mounted on a slide glass. The
cell nuclei were stained with DAPI. Fluorescence images
were acquired on a BZ-X800 digital microscope with a 40 ·
objective.

Results

We previously showed that TgMab-2 specifically recog-
nizes CHO/hTIGIT cells in flow cytometry.(49) In this study,
we investigated the availability of TgMab-2 and recTgMab-2
in immunocytochemistry. We found TgMab-2 and recTgMab-2,
but not buffer control, reacted to CHO/hTIGIT cells
(Fig. 1A). In contrast, TgMab-2 and recTgMab-2 did not bind
to parental CHO-K1 cells (Fig. 1B). Another anti-hTIGIT
mAb (A15153G) also reacted to CHO/hTIGIT cells, but not
to CHO-K1 cells (Fig. 1A, B). This result demonstrates that
TgMab-2 and recTgMab-2 specifically recognize exogenous
hTIGIT in immunocytochemistry.

Next, we have applied TgMab-2 and recTgMab-2 in NK
cells to investigate whether both antibodies recognize
endogenously expressing hTIGIT. We found that TgMab-2
and recTgMab-2, as well as A15153G, showed sensitive
fluorescent signals in NK cells (Fig. 1C), indicating that
TgMab-2 and recTgMab-2 reacted to endogenous hTIGIT in
immunocytochemistry.

Discussion

This study demonstrated that TgMab-2 and recTgMab-2
specifically recognize endogenous and exogenous hTIGIT
in immunocytochemistry. These mAbs would be powerful
tools for the diagnosis of hTIGIT-positive cancers through
detection of the tumor-infiltrating NK and CD8+ T cells.

Importantly, TgMab-2 and recTgMab-2 provided high-
contrast fluorescent images against both exogenously and
endogenously expressing hTIGIT in CHO/hTIGIT and NK
cells, respectively. We speculate that mAbs, developed by the
CBIS method,(27) are suitable in immunocytochemistry be-
cause a mammalian cell line, which stably expresses a target
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FIG. 1. Immunocytochemistry using TgMab-2 and recTgMab-2. (A, B) CHO/hTIGIT cells (A) or CHO-K1 (B) cells were
treated with buffer control, 10 mg/mL of A15153G, 10 mg/mL of TgMab-2, or 10mg/mL of recTgMab-2 for 1 h. The cells
were further treated with Alexa 488-conjugated anti-mouse IgG and DAPI for 45 min. (C) Immunocytochemistry of NK
cells using TgMag-2 and recTgMab-2. NK cells were treated with buffer control, 10mg/mL of A15153G, 10 mg/mL of
TgMab-2, or 10 mg/mL of recTgMab-2 for 2 h. The cells were further treated with Alexa 488-conjugated anti-mouse IgG
and DAPI for 45 min. Scale bars; 20 mm. CHO, Chinese hamster ovary; DAPI, 4’,6-diamidino-2-phenylindole; hTIGIT,
human TIGIT; IgG, immunoglobulin G; NK, natural killer; TIGIT, T cell immunoglobulin and immunoreceptor tyrosine-
based inhibitory motif domain.
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membrane protein, is used for an immunogen. Furthermore,
the conformation and post-translational modification of the
immunogen would be physiological.

In fact, we have confirmed that an anti-CCR3 mAb [clone
C3Mab-2(50)], anti-CCR8 mAbs [clone C8Mab-1,(19) C8Mab-
2,(51) and C8Mab-3(18)], and an anti-CCR9 mAb [clone
C9Mab-1(52)] also provided high-contrast images against
both endogenously and exogenously expressing target mol-
ecules in immunocytochemistry.

We consider that the high-contrast images by TgMab-2
and recTgMab-2 would enable us to identify the cellular
distribution of hTIGIT and support elucidate the physiolog-
ical functions of hTIGIT. To further clarify the function of
TIGIT using TgMab-2 and recTgMab-2, we need to inves-
tigate whether both mAbs are applicable for immunohisto-
chemistry, immunoprecipitation, and Western blotting in
the future study.

Some studies have revealed that blockade of TIGIT by
its specific mAbs elicited antitumor responses and tumor re-
gression, including colorectal carcinoma, breast cancer, mel-
anoma, and fibrosarcoma.(10,53,54) Interestingly, co-blockade
of TIGIT with PD-1 and CTLA-4 more potently elicits anti-
tumor responses.(53–55) Moreover, co-blockade of TIGIT and
PD-1 together with CD40 agonist suppressed the progression
of pancreatic cancer.(56) In the future, it is necessary to in-
vestigate the antitumor responses of TgMab-2 and recTgMab-
2, in addition to the antibody-dependent cellular cytotoxicity
and complement-dependent cytotoxicity activities.
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