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Epitope Mapping of the Anti-Human CCR2
Monoclonal Antibody C2Mab-9
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CC chemokine receptor type-2 (CCR2) belongs to the G protein-coupled receptors superfamily, localized on
cell surface of some immune-related cells, including monocytes and macrophages. CCR2 and its ligand CCL2
are involved in the progression of various diseases such as cancers. Therefore, CCR2-targeted monoclonal
antibodies (mAbs) are needed for treatment and diagnosis. Previously, we successfully developed an anti-
human CCR2 (hCCR2) mAb, C2Mab-9 (mouse IgG1, kappa), which is applicable for flow cytometry and
immunocytochemistry. In this study, we investigated the critical epitope of C2Mab-9. We conducted enzyme-
linked immunosorbent assay (ELISA) using several N-terminal peptides of hCCR2, and demonstrated that
C2Mab-9 recognizes 11–29 and 21–39 amino acids of hCCR2. We further performed ELISA using 20 peptides,
which include alanine substitution of hCCR2. C2Mab-9 lost the reaction to the alanine-substituted peptides of
F23A, F24A, D25A, Y26A, and D27A. Among them, F23A, F24A, D25A, and Y26A did not block the C2Mab-
9 reaction with U937 cells in flow cytometry. These results indicate that the critical binding epitope of C2Mab-9
includes Phe23, Phe24, Asp25, and Tyr26.

Keywords: human CCR2, C2Mab-9, epitope, monoclonal antibody, enzyme-linked immunosorbent assay, flow
cytometry

Introduction

C hemokines play pivotal roles in cellular function,
including immune responses.(1,2) They are divided

into four different subfamilies of XC, CC, CXC, and CX3C,
depending on the number and position of cysteine residues
at the N-terminus.(3,4) Chemokine receptors are G protein-
coupled receptor (GPCR) with seven transmembrane
regions.

CC chemokine receptor type-2 (CCR2) is expressed in
multiple cells, including epithelial cells, monocytes, macro-
phages, and dendritic cells. CCR2 is involved in the regula-
tion of migration and infiltration of immune-related cells.(5–8)

CCR2 is the primary receptor of C-C motif chemokine 2
(CCL2)/monocyte chemoattractant protein-1. CCL2 also
plays an important role in attracting the key immune regu-
lators, including T lymphocytes, natural killer cells, and
monocytes.(5,9) CCL2-CCR2 axis is correlated with many
diseases such as immune disorders and cancers.(10,11)

In respiratory organs, CCL2 and CCR2-expressing mac-
rophages and neutrophils contribute to the innate im-
mune responses during viral and bacterial infection.(12)

CCR2 induces neutrophil organ entry in sepsis.(13) High
CCR2 levels in blood samples have been detected in patients
with severe COVID-19.(14) Furthermore, CCL2 has been
reported to be increased in several tumors, such as blad-
der,(15) bone,(16) and inflammatory breast cancers.(17) High
CCR2 expression has been confirmed in the invasive lesion
of breast cancers as well as CCL2 expression.(18) Inhibition
of CCR2 has been reported to enhance the effectiveness of
immune checkpoint inhibitors, such as an anti-programmed-
cell death-1 monoclonal antibody (mAb) in mouse tumor
models, and clinical trials are ongoing.(15,19)

We have produced numerous mAbs against membrane
proteins, including EGFR,(20) HER2,(21) HER3,(22) CD20,(23)

CD44,(24) CD133,(25) and podoplanin,(26–30) and determined
their epitopes.(31–34) Moreover, we have also developed
anti-GPCR mAbs, including anti-mouse CCR2,(35) mouse
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CCR3,(36) mouse CCR4,(37) mouse CCR8,(38) and human
CCR9,(39) and also determined the binding epitope.(40) In
this study, we performed the epitope mapping of C2Mab-9
by using enzyme-linked immunosorbent assay (ELISA) and
flow cytometric methods.

Materials and Methods

Cell lines

The U937 (human histiocytic lymphoma) cell line was
obtained from the Japanese Collection of Research Bio-
resources (Osaka, Japan). U937 cells were cultured in a
Roswell Park Memorial Institute 1640 medium (Nacalai
Tesque, Inc., Kyoto, Japan) that was supplemented with
10% heat-inactivated fetal bovine serum (Thermo Fisher
Scientific, Inc., Waltham, MA), 100 units/mL penicillin,

Table 2. Identification of the C2Mab-9 Epitope

Using Alanine-Substituted Human CC
Chemokine Receptor 2 Peptides

Peptides Sequences C2Mab-9

T21A ATFFDYDYGAPSHKFDVKQI +++
T22A TAFFDYDYGAPSHKFDVKQI +++
F23A TTAFDYDYGAPSHKFDVKQI -
F24A TTFADYDYGAPSHKFDVKQI -
D25A TTFFAYDYGAPSHKFDVKQI -
Y26A TTFFDADYGAPSHKFDVKQI -
D27A TTFFDYAYGAPSHKFDVKQI -
Y28A TTFFDYDAGAPSHKFDVKQI +++
G29A TTFFDYDYAAPSHKFDVKQI +++
A30G TTFFDYDYGGPSHKFDVKQI +++
P31A TTFFDYDYGAASHKFDVKQI +++
S32A TTFFDYDYGAPAHKFDVKQI +++
H33A TTFFDYDYGAPSAKFDVKQI +++
K34A TTFFDYDYGAPSHAFDVKQI +++
F35A TTFFDYDYGAPSHKADVKQI +++
D36A TTFFDYDYGAPSHKFAVKQI +++
V37A TTFFDYDYGAPSHKFDAKQI +++
K38A TTFFDYDYGAPSHKFDVAQI +++
Q39A TTFFDYDYGAPSHKFDVKAI +++
I40A TTFFDYDYGAPSHKFDVKQA +++

+++, OD655S0.3; -, OD655 < 0.1.

FIG. 1. Determination of the C2Mab-9 epitope for hCCR2 by ELISA using N-terminal peptides. (A) N-terminal syn-
thesized peptides of hCCR2 were immobilized on immunoplates. The plates were incubated with C2Mab-9 (1mg/mL)
followed by incubation with peroxidase-conjugated anti-mouse immunoglobulins. (B) Schematic illustration of hCCR2 and
the C2Mab-9 epitope. ELISA, enzyme-linked immunosorbent assay; hCCR2, human CC chemokine receptor 2.

Table 1. Identification of the C2Mab-9
Epitope Using N-Terminal Human CC

Chemokine Receptor 2 Peptides

Peptides Sequences C2Mab-9

1–19 MLSTSRSRFIRNTNESGEE -
11–29 RNTNESGEEVTTFFDYDYG +++
21–39 TTFFDYDYGAPSHKFDVKQ +++

+++, OD655S0.3; -, OD655 < 0.1.
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100 lg/mL streptomycin, and 0.25 lg/mL amphotericin B
(Nacalai Tesque, Inc.). Cells were grown in a humidified
incubator, which was supplied with 5% CO2 and 95% air
at 37�C.

ELISA

The human CCR2 (hCCR2) peptides (Accession No.
NM_001123041), including 3 N-terminal peptides (Table 1)
and 20 point mutants (Table 2), were synthesized by utiliz-
ing PEPScreen (Sigma-Aldrich Corp., St. Louis, MO). Each
peptide was immobilized on Nunc Maxisorp 96-well im-
munoplates (Thermo Fisher Scientific, Inc.) at a concentra-
tion of 10 lg/mL for 30 minutes at 37�C. After washing with
phosphate-buffered saline (PBS) containing 0.05% Tween20
(PBST), wells were blocked with 1% bovine serum albumin
(BSA)-containing PBST for 30 minutes at 37�C. The plates

were then incubated with C2Mab-9 (1 lg/mL), followed
by a 1:2000 dilution of peroxidase-conjugated anti-mouse
immunoglobulins (Agilent Technologies, Inc., Santa Clara,
CA). Enzymatic reactions were performed using the ELISA
POD Substrate TMB Kit (Nacalai Tesque, Inc.). Optical
density was measured at 655 nm using an iMark microplate
reader (Bio-Rad Laboratories, Inc., Berkeley, CA).

Flow cytometry

U937 cells were washed with 0.1% BSA in PBS. C2Mab-9
(1 lg/mL) was incubated with each peptide (10 lg/mL) for 30
minutes at 4�C. U937 cells were treated with C2Mab-9+each
peptide, and further with Alexa Fluor 488-conjugated anti-
mouse IgG (1:1000). The fluorescence data were collected
using a BD FACSLyric (BD Biosciences, Franklin Lakes, NJ).

FIG. 2. Determination of the C2Mab-9 epitope for hCCR2 by ELISA using point mutants. (A) Synthesized peptides of
hCCR2 were immobilized on immunoplates. The plates were incubated with C2Mab-9 (1 mg/mL), followed by peroxidase-
conjugated anti-mouse immunoglobulins. (B) Schematic illustration of hCCR2 and the C2Mab-9 epitope. The C2Mab-9
epitope of hCCR2 involves Phe23, Phe24, Asp25, Tyr26, and Asp27.
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Results

Epitope mapping using N-terminal hCCR2 peptides

In our previous study, we developed an anti-hCCR2
mAb (clone C2Mab-9) using synthetic peptide immuniza-
tion method.(41) C2Mab-9 is suitable for in vitro applica-
tions, including flow cytometry and immunocytochemistry.
To characterize the binding epitope of C2Mab-9 for hCCR2,
we synthesized three N-terminal peptides: 1–19 amino acids
(aa), 11–29 aa, and 21–39 aa (Table 1). The results of ELISA
demonstrated that C2Mab-9 reacted with 11–29 aa and 21–39
aa of hCCR2 (Fig. 1A). These results are summarized in
Figure 1B.

Epitope mapping using alanine-substituted
hCCR2 peptides

We further synthesized 20 different alanine-substituted
hCCR2 peptides (Table 2). The results of ELISA demon-
strated that C2Mab-9 reacted with point mutants, such as
T21A, T22A, Y28A, G29A, A30G, P31A, S32A, H33A,
K34A, F35A, D36A, V37A, K38A, Q39A, and I40A, as
well as the 21–40 aa wild-type sequence (positive control)
(Fig. 2A). In contrast, C2Mab-9 did not bind to point mutants,
such as the F23A, F24A, D25A, Y26A, and D27A (Fig. 2A),
indicating that Phe23, Phe24, Asp25, Tyr26, and Asp27 were
determined to be the critical aa, which are included in the
C2Mab-9 epitope. The results are summarized in Figure 2B.

FIG. 3. Flow cytometry using C2Mab-9 and peptides of hCCR2. (A) C2Mab-9 (1mg/mL), C2Mab-9 (1 mg/mL) plus
peptides (T22A, F23A, F24A, D25A, Y26A, and D27A; 10 mg/mL), or control (blocking buffer) were reacted with U937
cells for 30 min at 4�C, followed by the addition of secondary antibodies. (B) Schematic illustration of hCCR2 and the
C2Mab-9 epitope. The C2Mab-9 epitope of hCCR2 involves Phe23, Phe24, Asp25, and Tyr26.
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Flow cytometry using C2Mab-9 and alanine-substituted
hCCR2 peptides

We then performed a blocking assay using flow cytom-
etry. C2Mab-9 reacted with the U937 cell line (Fig. 3A).
This reaction was completely neutralized by T22A and
D27A. In contrast, F23A, F24A, D25A, and Y26A did not
block the reaction of C2Mab-9 for U937 cells (Fig. 3A),
indicating that Phe23, Phe24, Asp25, and Tyr26 of hCCR2
are critical for C2Mab-9 detection. The results are summa-
rized in Figure 3B.

Discussion

Design of immunogen and epitope identification are
essential for the development of mAbs and vaccines.(42,43)

Furthermore, the determination of the mAb epitope can lead
to the development of peptide tag systems for protein ex-
traction, purification, or detection assays.(44–47)

We previously developed an anti-human CCR9 mAb
(clone C9Mab-1) by using Cell-Based Immunization and
Screening method and clarified that the epitope of C9Mab-1
is located on the N-terminus of the human CCR9.(39,40)

Then, we have developed several anti-GPCR mAbs, includ-
ing anti-mouse CCR2,(35) human CCR2,(41) mouse CCR3,(48)

and mouse CCR4(37) by immunizing mice or rats with the
N-terminal peptides of GPCRs.

In this study, we identified the critical epitope of C2Mab-9
as Phe23, Phe24, Asp25, Tyr26, and Asp27 using ELISA
(Fig. 2). In contrast, blocking assay using flow cytometry re-
vealed that Phe23, Phe24, Asp25, and Tyr26 of hCCR2 were
critical epitope of C2Mab-9 (Fig. 3). This discrepancy might be
caused by the condition of peptides: solid phase of ELISA or
liquid phase of flow cytometry. We have previously developed
various novel epitope mapping system, named RIEDL inser-
tion for epitope mapping (REMAP)(49–52) and histidine-tag
insertion for epitope mapping (HisMAP) method.(53) These
methods could be applied to determine linear and structural
epitopes. Therefore, we should determine the binding epitope
of C2Mab-9 using REMAP and HisMAP methods in the future
study.

CCR2 is a seven-transmembrane receptor with four
extracellular regions (Figs. 2B and 3B). N-terminal do-
mains of some GPCRs, such as CCR2, CCR3, CCR5, and
CXCR1, have been determined as their ligand-binding
sites.(54) The several aa in the N-terminal region of
CCR2B (predominant isoform of CCR2) were reported to
be important for CCL2-triggered cell migration and la-
mellipodium formation,(55) indicating that C2Mab-9
might be advantageous for the functional study about the
CCL2-CCR2 axis.
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