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Antitumor Activities in Mouse Xenograft Models of Canine
Fibroblastic Tumor by Defucosylated Anti-Epidermal Growth

Factor Receptor Monoclonal Antibody
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The epidermal growth factor receptor (EGFR) is involved in tumor malignancy through gene amplification
and/or protein overexpression. An anti-human EGFR (hEGFR) monoclonal antibody (clone EMab-134), which
explicitly detects hEGFR and dog EGFR (dEGFR), was previously developed. The defucosylated mouse IgG2a

version of EMab-134 (134-mG2a-f) exhibits antibody-dependent cellular cytotoxicity (ADCC) and
complement-dependent cytotoxicity (CDC) in dEGFR-overexpressed CHO-K1 (CHO/dEGFR) cells and anti-
tumor activities in mouse xenografts of CHO/dEGFR cells. In this study, it was shown that 134-mG2a-f reacts
with a canine fibroblastic tumor cell line (A-72) using flow cytometry and immunocytochemistry. Furthermore,
134-mG2a-f exerted ADCC and CDC on A-72 cell line. The administration of 134-mG2a-f significantly in-
hibited the A-72 xenograft growth. These results suggest that 134-mG2a-f exerts antitumor effects on dEGFR-
expressing canine fibroblastic tumors.
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Introduction

A dog is an animal that spontaneously develops can-
cers, such as melanomas, breast cancers, and fibro-

blastic tumors.(1–4) In terms of genetic, histological, and
biological features, a dog has strong similarities to humans.
Dogs share carcinogenic factors, such as aging, obesity,
exposure to carcinogens, and environmental risk factors
with humans.(5,6) Dogs grow five to eight times faster than
humans, making them suitable models for pathogenesis re-
search and age-related gene profiling.(4) Response to cancer
treatment, the acquisition of drug resistance, and cancer
metastasis are similarly observed in dogs and humans.(7)

Because of its similarity, human cancer research is expected
to be applied to dogs.(5,8) The inhibition of the programmed
cell death-1 (PD-1) pathway has been reported to be one of
the therapeutic strategies in canine metastatic oral malignant
melanoma.(9)

Epidermal growth factor receptor (EGFR) is a type I
transmembrane protein that forms a dimer by binding its ligand
and regulating cell proliferation and survival. Overexpression
and mutations of EGFR activate multiple intracellular cas-
cades.(10) EGFR is closely associated with different cancer
development and malignancy in humans and dogs.(11–15)

EGFR expression also correlates with poor prognosis in canine
mammary cancers.(16) Human EGFR (hEGFR) and dog EGFR
(dEGFR) have 91% amino acid homology.(17) Therefore, the
development of therapeutic methods targeting EGFR is suit-
able as a canine cancer treatment.

An anti-hEGFR monoclonal antibody (mAb), clone
EMab-134 (mouse IgG1, kappa), was previously devel-
oped.(18) The 134-mG2a, an IgG2a type of EMab-134, exerted
antitumor activities in a model of human oral squamous cell
carcinoma.(19) In addition, the 134-mG2a-f, defucosylated
type of 134-mG2a, possesses antitumor effects in mouse xe-
nograft models of dEGFR-expressed cells.(20)
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In this study, we investigated whether 134-mG2a-f pos-
sesses antibody-dependent cellular cytotoxicity (ADCC),
complement-dependent cytotoxicity (CDC), and antitumor
activities using a canine fibroblastic tumor xenograft model.

Materials and Methods

Cell lines, antibodies, and animals

A canine fibroblast cell line (A-72) was obtained from the
American Type Culture Collection (Manassas, VA). A-72
was cultured in Dulbecco’s modified Eagle medium
(DMEM; Nacalai Tesque, Inc., Kyoto, Japan), supplemented
using 10% heat-inactivated fetal bovine serum (FBS; Thermo
Fisher Scientific Inc., Waltham, MA), 100 U/mL of penicil-
lin, 100 lg/mL of streptomycin, and 0.25 lg/mL of ampho-
tericin B (Nacalai Tesque, Inc.). Cells were cultured at 37�C
in a humidified atmosphere containing 5% CO2.

An anti-hEGFR mAb, EMab-134, was developed as pre-
viously described.(18) To generate 134-mG2a, VH comple-
mentary DNA (cDNA) of EMab-134 and CH mouse IgG2a

was subcloned into the pCAG-Neo vector (FUJIFILM Wako
Pure Chemical Corporation, Osaka, Japan), and VL and CL

cDNAs of EMab-134 were subcloned into the pCAG-Ble
vector (FUJIFILM Wako Pure Chemical Corporation).(19)

The vectors of 134-mG2a were transfected into BINDS-09
cells (FUT8-deficient ExpiCHO-S cells) using the ExpiCHO
expression system (Thermo Fisher Scientific Inc.).(20) The
resulting mAbs (134-mG2a-f) were purified using Protein
G-Sepharose (GE Healthcare Biosciences, Pittsburgh,
PA).(20) Mouse IgG (cat. no. I8765) and mouse IgG2a (cat. no.
M7769) were bought from Sigma-Aldrich (St. Louis, MO).

Female BALB/c nude mice (5 weeks old, weighing 14–17 g)
were bought from Charles River Laboratories, Inc. The animal
experiments were conducted following relevant guidelines and
regulations to minimize animal suffering and distress in the
laboratory. The institutional committee for experiments of the
Institute of Microbial Chemistry approved animal experiments
for ADCC and antitumor activity (permit Nos. 2021-028 for
ADCC assays and 2021-021 for antitumor experiments).

Mice were maintained in a specific pathogen-free envi-
ronment (23�C – 2�C, 55% – 5% humidity) on 11 hours
light/13 hours dark cycle with food and water supplied ad
libitum across the experimental period. Mice were monitored
for health and weight every 2–5 days during the 3 weeks
period of each experiment. The loss of original body weight
to a point >25% and/or a maximum tumor size >3000 mm3

were determined as humane endpoints for euthanasia. Mice
were euthanized by cervical dislocation; death was verified
through respiratory and cardiac arrest.

Flow cytometry

A-72 cells were harvested by brief exposure to 0.25% tryp-
sin/1 mM ethylenediaminetetraacetic acid (EDTA, Nacalai
Tesque, Inc.). After washing with 0.1% bovine serum albumin
(BSA) blocking buffer in phosphate-buffered saline (PBS), cells
were treated with 1lg/mL 134-mG2a-f or control blocking
buffer for 30 minutes at 4�C. Then cells were incubated in Alexa
Fluor 488-conjugated anti-mouse IgG at a dilution of 1:1000
(cat no. 4408S; Cell Signaling Technology, Inc., Danvers, MA)
for 30 minutes at 4�C. Fluorescence data were obtained using
the EC800 Cell Analyzer (Sony Corp., Tokyo, Japan).

Determination of binding affinity

A-72 cells were suspended in 100 lL of serially diluted
134-mG2a-f (0.006–100 lg/mL) followed by Alexa Fluor
488-conjugated anti-mouse IgG (1:200; Cell Signaling
Technology, Inc.). Fluorescence data were obtained using the
EC800 Cell Analyzer (Sony Corp.). The dissociation con-
stant (KD) was calculated by fitting binding isotherms to
built-in one-site binding models in GraphPad Prism 8
(GraphPad Software, Inc., La Jolla, CA).

Immunocytochemical analysis

Subconfluent A-72 cells cultured on acid-wash coverslips
were fixed in 4% paraformaldehyde in PBS for 10 minutes at
room temperature. After quenching with 50 mM NH4Cl in
PBS containing 0.2 mM Ca2+ and 2 mM Mg2+ (PBSc/m) for
10 minutes, the cells were blocked using a blocking buffer
(PBSc/m containing 0.5% BSA) for 30 minutes and incu-
bated with 10 lg/mL of 134-mG2a-f or control blocking
buffer for 1 hour. Then, the cells were labeled using Alexa
Fluor 488-conjugated anti-mouse IgG for 45 minutes. The
cell nuclei were stained using 4’,6-diamidino-2-phenylindole
(DAPI; Thermo Fisher Scientific Inc.). A fluorescence mi-
croscope BZ-X800 (Keyence, Osaka, Japan) was used to
obtain fluorescence images.

ADCC

ADCC assay was previously reported.(20–36) In brief,
spleen cells from five mice were used as the source of
mononuclear cells to evaluate ADCC. After euthanasia by
cervical dislocation, the spleens were eliminated aseptically
and a syringe was used to force spleen tissue through a sterile
cell strainer (352360; BD Falcon, Corning, New York, NY)
and obtain single-cell suspensions. Erythrocytes were lysed
by 10 seconds exposure to ice-cold distilled water. Spleno-
cytes were washed using DMEM and resuspended in DMEM
with 10% FBS to be used as effector cells.

A-72 cells were labeled with 10 lg/mL of Calcein AM
(Thermo Fisher Scientific, Inc.) and resuspended in the same
medium. A-72 cells (2 · 104 cells/well) were plated in 96-
well plates and mixed with splenocytes (effector/target cells
ratio, 50), 100 lg/mL of 134-mG2a-f or control mouse IgG2a.
After 4.5 hours incubation at 37�C, the amount of calcein
released into the supernatant was measured in each well. The
fluorescence intensity was determined using a microplate
reader (Power Scan HT; BioTek Instruments, Inc., Winooski,
VT) with an excitation wavelength of 485 nm and an emis-
sion wavelength of 538 nm.

Cytolytic activity (% lysis) was calculated as follows: %
lysis = (E - S)/(M - S) · 100, where ‘‘E’’ is the fluorescence
measured in combined cultures of target and effector cells,
‘‘S’’ is the spontaneous fluorescence of target cells only, and
‘‘M’’ is the maximum fluorescence measured after the lysis
of all cells with a buffer containing 0.5% Triton X-100,
10 mM Tris-HCl (pH 7.4), and 10 mM EDTA.

CDC

CDC assay was previously reported.(20–36) In brief, A-72
cells were labeled with 10 lg/mL of Calcein AM (Thermo
Fisher Scientific, Inc.) and resuspended in the same medium.
A-72 cells were then plated in 96-well plates at 2 · 104
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cells/well using rabbit complement (final dilution 1:10; Low-
Tox-M Rabbit Complement; Cedarlane Laboratories, Horn-
by, Ontario, Canada) and 100 lg/mL of 134-mG2a-f or
control mouse IgG2a. After 4 hours of incubation at 37�C, the
amount of calcein released into the supernatant for each well
was measured.

Cytolytic activity (% lysis) was calculated as follows: %
lysis = (E - S)/(M - S) · 100, where ‘‘E’’ is the fluorescence
measured in combined cultures of target and effector cells,
‘‘S’’ is the spontaneous fluorescence of target cells only, and
‘‘M’’ is the maximum fluorescence measured after the lysis
of all cells with a buffer containing 0.5% Triton X-100,
10 mM Tris-HCl (pH 7.4), and 10 mM EDTA.

Antitumor activity of 134-mG2a-f in xenografts
of A-72 cells

Sixteen female BALB/c nude mice were used in experi-
ments once they reached 7 weeks of age. A-72 cells (0.3 mL
1.33 · 108 cells/mL in DMEM) were mixed with 0.5 mL
of BD Matrigel Matrix Growth Factor Reduced (BD Bios-
ciences, San Jose, CA); 100 lL of this suspension (5 · 106

cells) was injected subcutaneously into the left flanks of
the mice.

On day 7 postinoculation, 100 lg of 134-mG2a-f (n = 8), or
control mouse IgG (n = 8) in 100mL of PBS was injected
intraperitoneally. Additional antibody injections were ad-
ministered on days 14 and 21. On day 25 after cell implan-
tation, all mice were euthanized through cervical dislocation.
Tumor diameters and volumes were determined as previously
described.(20)

Statistical analyses

All data are expressed as mean – standard error of the
mean. Statistical analysis was conducted using Tukey’s test
for ADCC and CDC and Welch’s t-test for tumor weight.
Analysis of variance and Sidak’s multiple comparison tests
were performed for tumor volume and mouse weight. All
calculations were conducted using GraphPad Prism 8
(GraphPad Software, Inc.). A p-value of <0.05 was consid-
ered statistically significant.

Results

Flow cytometry analysis against canine fibroblastic
tumor cell line, A-72 cells using 134-mG2a-f

In our previous study, an anti-hEGFR mAb, EMab-134,
recognized CHO/dEGFR cells, showing that EMab-134
cross-reacts with dEGFR.(20) In this study, the defucosylated
mouse IgG2a type of EMab-134 (134-mG2a-f) detected A-72
cells (Fig. 1A), showing that 134-mG2a-f detects endogenous
dEGFR expressed on A-72 cells.

Determination of binding affinity

A kinetic analysis of the interactions of 134-mG2a-f with
A-72 cells was conducted using flow cytometry. As shown in
Figure 1B, the KD for the interaction of 134-mG2a-f with
A-72 cells was 1.1 · 10-9 M, suggesting that 134-mG2a-f
shows a high affinity for A-72 cells.

Immunocytochemical analysis against A-72 cells
using 134-mG2a-f

The 134-mG2a-f was applied to immunocytochemistry in
A-72 cells. As shown in Figure 1C, 134-mG2a-f, but not
buffer control, visualized dEGFR in A-72 cells, suggesting
that 134-mG2a-f recognizes endogenous dEGFR in A-72
cells.

FIG. 1. Flow cytometry and immunocytochemistry using
134-mG2a-f. (A) Flow cytometry using A-72 cells and
134-mG2a-f. (B) Determination of the binding affinity of 134-
mG2a-f for A-72 cells using flow cytometry. (C) Immuno-
cytochemical analyses using A-72 cells and 134-mG2a-f.
DAPI, 4’,6-diamidino-2-phenylindole; dEGFR, dog epi-
dermal growth factor receptor.
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134-mG2a-f-mediated ADCC and CDC in A-72 cells

Next, it was investigated whether 134-mG2a-f has ADCC
against A-72 cells. As indicated in Figure 2A, 134-mG2a-f
showed ADCC (15.8% cytotoxicity) against A-72 cells,
which is more potent than mouse IgG2a (5.6% cytotoxicity)
and PBS (4.0% cytotoxicity).

It was then investigated whether 134-mG2a-f has CDC
against A-72 cells. As shown in Figure 2B, 134-mG2a-f eli-
cited a higher degree of CDC (43.2% cytotoxicity) in A-72
cells than that elicited by mouse IgG2a (36.1% cytotoxicity)
and PBS (31.8% cytotoxicity). These results showed that
134-mG2a-f exerts ADCC and CDC against dEGFR-
expressing A-72 cells.

Antitumor activities of 134-mG2a-f in the mouse
xenografts of A-72 cells

In the A-72 xenograft models, 134-mG2a-f (100lg) and
control mouse IgG (100lg) were injected intraperitoneally into
mice on days 7, 14, and 21 after the injection of A-72 cells. The
tumor volume was measured on days 7, 11, 14, 18, 21, and 25
postinoculation. The administration of 134-mG2a-f caused a
significant reduction in tumor development on days 11
( p < 0.01), 14 ( p < 0.01), 18 ( p < 0.01), 21 ( p < 0.01), and 25
( p < 0.01) compared with that of the control mouse IgG
(Fig. 3A).

The administration of 134-mG2a-f caused 52% reduction
in tumor volume compared with that of the control mouse
IgG on day 25 postinjection. Furthermore, the tumor weight
of the 134-mG2a-f-treated mice was significantly lower than
that of IgG-treated mice (48% reduction; p < 0.01, Fig. 3B).
The total body weights of the two groups did not significantly
change (Fig. 3C). Altogether, these results indicate that the
administration of 134-mG2a-f effectively suppresses tumor
growth of A-72 xenografts.

FIG. 2. Evaluation of ADCC and CDC elicited by 134-
mG2a-f. (A) ADCC elicited by 134-mG2a-f, mouse IgG2a, or
PBS targeting A-72 cells. Asterisks indicate statistical sig-
nificance (*p < 0.05, n.s.; Tukey’s test). (B) CDC elicited by
134-mG2a-f, mouse IgG2a, or PBS targeting A-72 cells. Va-
lues are means – SEM. Asterisks indicate statistical signifi-
cance (**p < 0.01, *p < 0.05, n.s.; Tukey’s test). ADCC,
antibody-dependent cellular cytotoxicity; CDC, complement-
dependent cytotoxicity; n.s., not significant; PBS, phosphate-
buffered saline; SEM, standard error of the mean.

FIG. 3. Evaluation of antitumor activity of 134-mG2a-f in
A-72 xenografts. (A) A-72 cells were subcutaneously in-
jected into the left flank. On day 7, 100 mg 134-mG2a-f or
mouse IgG in 100 mL PBS was injected intraperitoneally
into mice; additional antibodies were then injected on days
14 and 21. The tumor volume was measured on days 7, 11,
14, 18, 21, and 25 after the injection. Values are means –
SEM. Asterisks indicate statistical significance (**p < 0.01,
n.s.; ANOVA and Sidak’s multiple comparisons test).
(B) A-72 xenografts were resected from 134-mG2a-f and
mouse IgG groups. Tumor weight on day 25 was measured.
Values are means – SEM. Asterisk indicates statistical
significance (**p < 0.01, Welch’s t-test). (C) Body weights
of mice implanted with A-72 xenografts were recorded on
days 7, 11, 14, 18, 21, and 25 (n.s.). ANOVA, analysis of
variance; n.s., not significant.
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Discussion

EGFR is an essential oncoprotein, which promotes tumor
development.(10) Therefore, therapeutic agents targeting
EGFR have been developed.(37,38) The EGFR-targeted anti-
body drugs, including panitumumab and cetuximab,(39,40)

have similar binding affinities to EGFR but different epitopes
on the EGFR.(41–43) These mAbs can inhibit the EGFR sig-
naling pathways and induce apoptosis in EGFR-expressing
cancer cells and exhibit therapeutic potential for patients with
advanced colorectal cancer.(44,45)

Approved drugs for humans are often used for canine
cancer treatment due to their similarities.(5,46) Because
EGFR is involved in canine cancer malignancy and poor
prognosis, EGFR-targeting drugs are considered an impor-
tant therapeutic strategy. It has been previously shown that
the 134-mG2a-f has an antitumor effect against a dEGFR-
overexpressed CHO-K1 model.(20) This study also demon-
strated antitumor activities of a defucosylated IgG2a type of
anti-hEGFR mAb (134-mG2a-f) in vitro and in vivo on ca-
nine fibroblastic tumor cells expressing endogenous dEGFR
(Figs. 2 and 3).

The combination therapy of cetuximab and pembro-
lizumab is successful for human head and neck squamous cell
carcinomas.(47) Pembrolizumab is an immune checkpoint
inhibitor that recognizes immunosuppressive molecule PD-1
expressed on T cells and has been expanded to various hu-
man cancers recently.(48) Immune checkpoint inhibitors
and chimeric antigen receptor-T cell therapy are also used to
treat canine cancers.(49) Therefore, the combination of anti-
EGFR mAb therapy and immune checkpoint inhibitors is
expected to be more effective in canine cancer treatment.
Further studies are needed to investigate the antitumor
activity of 134-mG2a-f to spontaneously develop canine
cancers.
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