Open camera or QR reader and scan code to access this article and other resources online.

Epitope Mapping of the Anti-CD20 Monoclonal Antibodies (C20Mab-11 and 2H7) Using HisMAP Method

Hiroyuki Suzuki,¹ Teizo Asano,² Tomohiro Tanaka,² Mika K. Kaneko,² and Yukinari Kato^{1,2}

CD20, which is expressed on B lymphocytes, has been studied as a therapeutic target for B cell lymphomas and autoimmune disorders. Identifying the binding epitopes of monoclonal antibodies (mAbs) can contribute to our understanding of their functions. We have previously developed an anti-CD20 mAb (clone C_{20} Mab-11) using a Cell-Based Immunization and Screening (CBIS) method. In this study, we aimed to determine the binding epitopes of anti-CD20 mAbs, such as C_{20} Mab-11 and 2H7, using the His-tag insertion for epitope mapping (HisMAP). The results showed that $_{171}$ -NPSE- $_{174}$ and $_{168}$ -EPANPSE- $_{174}$ in the second loop of CD20 were essential for C_{20} Mab-11 binding and 2H7 binding, respectively. Although we developed many mAbs that recognize conformational epitopes using the CBIS method, there are many difficulties in epitope mapping for these mAbs. HisMAP could be useful for determining the conformational epitopes of other mAbs against membrane proteins.

Keywords: CD20, epitope mapping, monoclonal antibody, His tag

Introduction

C D20, A GLYCOSYLATED TRANSMEMBRANE PROTEIN with two small and large extracellular loops (~7 and 44 amino acids), four transmembrane domains, and intracellular N- and C-terminal regions,^(1,2) is expressed on normal B cells from pre-B to mature B cells, but not on pro-B cells and plasma cells.⁽³⁾ CD20 is also detected in human B cell malignancies, including non-Hodgkin's lymphoma⁽⁴⁾ and B lymphoblastic leukemia.⁽⁵⁾ Since CD20 is not expressed on early pro-B cells, anti-CD20 monoclonal antibodies (mAbs), including rituximab, ofatumumab, and obinutuzumab, can destroy B cell malignancies through complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC) without affecting the early lineage of normal B cells.⁽⁶⁻⁸⁾

Rituximab also affects CD20-expressing normal B cells and is approved for autoimmune disorders, including rheumatoid arthritis,^(9,10) granulomatosis with polyangiitis,^(11,12) and microscopic polyangiitis.^(13,14) These mAbs have dramatically improved the prognosis of patients with CD20positive malignancies and autoimmune diseases in the past two decades. Therefore, analyses of the specific nature of these mAbs, including their specific binding epitopes, affinities of target binding, and particular conformations, are important to understand their molecular activity. Epitope identification is particularly important for avoiding unexpected cross-reactivity and understanding the overall pharmacological function of mAbs. Nevertheless, determining the conformational epitopes of mAbs is challenging.

In our previous study, we established an anti-human CD20 mAb, C_{20} Mab-11 (mouse IgM, kappa), by using a Cell-Based Immunization and Screening (CBIS) method. C_{20} Mab-11 is useful not only for flow cytometry but also for Western blotting and immunohistochemical analyses.⁽¹⁵⁾ In this study, we aimed to determine the binding epitopes of C_{20} Mab-11, developed by the CBIS method, and comparing it with a commercially available anti-human CD20 mAb (clone 2H7), using a His-tag insertion for epitope mapping (HisMAP).

Materials and Methods

Cell lines and antibodies

Chinese hamster ovary (CHO)-K1 and P3U1 cells were obtained from the America Type Culture Collection (ATCC, Manassas, VA). CHO/CD20 was produced in our previous

Departments of ¹Molecular Pharmacology and ²Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.

FIG. 1. Schematic illustration of HisMAP. The $5 \times H^*$ is inserted into CD20. (A) C_{20} Mab-11 could bind to CD20 when $5 \times H^*$ was inserted into any region, which was independent of the C_{20} Mab-11 epitope. (B) C_{20} Mab-11 did not bind to CD20 when the conformation of the C_{20} Mab-11 epitope was disrupted by the $5 \times H^*$ tag insertion. HisMAP, His-tag insertion for epitope mapping.

study.^(15,16) CD20 mutation plasmids were transfected into CHO-K1 cells using Lipofectamine LTX with Plus Reagent (Thermo Fisher Scientific, Inc., Waltham, MA). CHO-K1 cells and transfectants were cultured in RPMI 1640 medium (Nacalai Tesque, Inc., Kyoto, Japan) supplemented with 10% heat-inactivated fetal bovine serum (FBS) (Thermo Fisher Scientific, Inc.), 100 U/mL of penicillin, 100 μ g/mL streptomycin, and 0.25 μ g/mL amphotericin B (Nacalai Tesque, Inc.) at 37°C in a humidified atmosphere containing 5% CO₂. The transfectants were cultivated in a medium containing 0.5 mg/mL Zeocin (InvivoGen, San Diego, CA).

Anti-CD20 mAb (clone 2H7) was purchased from Bio-Legend (San Diego, CA).

Establishment of an anti-His-tag mAb

Female BALB/c mice (6 weeks old) were purchased from CLEA Japan (Tokyo, Japan). The animals were housed under pathogen-free conditions. All animal experimentation procedures were approved by the animal care and use committee of Tohoku University. Two mice were immunized with N-terminal His-tagged SARS-CoV-2 spike protein (S2 sub-

		~	
74	141	187	Extracellular
		1	Membrane
50 104	127	211	Intropollulor
			Intracentiar
			1
1 CD	20		1
/			
1		29	
K142_5xH*_1143KH	RHHISHFLKMESLNFI	RAHTPYINIYNCEPANE	SEKNSPSTQYC
1143_5xH*_\$144KI	HHHHSHFLKMESLNFI	RAHTPYINIYNCEPANE	SEKNSPSTOYC
S144_5xH*_H145KIS	HHHHHHFLKMESLNFI	RAHTPYINIYNCEPANE	SEKNSPSTQYC
B145_5x8*_F146KIS	HHHHHFLEMESLNFI	RAHTPYINIYNCEPANE	SEKNSPSTQYC
F146 5xH* L147	HE HHRHHLKMESLNFI	RAHTPYINIYNCEPANE	SERNSPSTOIC
KIAR SYNY MIAG KIS	HET.KHHHHHMEST.NET	BAHTPYTNTYNCEPAN	SERVISPSTOVC
M149 5x8* E150 KTS	HFLKMRHHHHESLNFT	RAHTPYINTYNCEPANE	SEKNSPSTOYC
E150 5xH* S151 KIS	HFLKMEHHHHHSLNFI	RAHTPYINIYNCEPANE	SEKNSPSTOYC
\$151 5x8* L152	HFLEMESHHHHLNFI	RAHTPYINIYNCEPANE	SEKNSPSTQYC
L152 5xR* N153	HFLKMESLHHHHHNFI	RAHTPYINIYNCEPANE	SEKNSPSTQYC
N153 5xH* F154KIS	SFLKMESLNHHHHFI	RAHTPYINIYNCEPANE	SEKNSPSTQYC
F154_5xH*_1155KIS	HFLKMESLNFHHHHHI	RAHTPYINIYNCEPANE	SEKNSPSTQYC
1155_5xH*_R156KIS	BFLKMESLNFIHRAR	RAHTPYINIYNCEPANE	PSEKNSPSTQYC
R156_5x8*_A157KIS	HFLKMESLNFIRNHH	HAHTPYINIYNCEPANE	PSEKNSPSTQYC
A157 5×H* H158KIS	HFLKMESLNFIRAH	RHHTPYINIYNCEPANE	PSEKNSPSTQYC
H158 5xH* T159 KIS	HFLKMESLNFIRAH	RHHTPYINIYNCEPANE	SEKNSPSTQYC
D160 5-00 V161 KTS	OFT EMPST NETDAHT	PRESEVENTINGEPANE	SERNSPSIQIC
V161 5×H* 1162 KTS	HET.KMESINETRAHTP	VEHERHTNIVNCEPANE	SEKNSPSTOVC
1162 5x8* N163	HFLKMESLNFIRAHTP	YIHHHHNIYNCEPANE	SEKNSPSTOYC
N163 5xH* 1164	HFLKMESLNFIRAHTP	YINHHHHHIYNCEPANE	SEKNSPSTOYC
1164 5xH* ¥165 KIS	HFLKMESLNFIRAHTP	YINIHRHHHYNCEPANE	SEKNSPSTQYC
Y165 5x8* N166KIS	HFLKMESLNFIRAHTP	YINIYRHHHMCEPANE	SEKNSPSTQYC
N166_5xH*_C167KIS	HFLKMESLNFIRAHTP	YINIYNHRHRRCEPANE	SEKNSPSTQYC
C167_5xH*_E168KIS	HFLKMESLNFIRAHTF	YINIYNCHHHHHEPANI	SEKNSPSTQYC
E168_5xH*_P169KIS	HFLKMESLNFIRAHTP	YINIYNCEHBHHHPANE	PSEKNSPSTQYC
P169 5xH* A170KIS	HFLKMESLNFIRAHTP	YINIYNCEPHHHHHAN	PSEKNSPSTQYC
A170 5xH* N171KIS	HFLKMESLNFIRAHTP	YINIYNCEPAHHHHHN	PSEKNSPSTQYC
D172 5-04 0172 KIS	DET EMESLINF INAHTE	YINIYNCEPANHHHHH	SERNSPSTOYC
\$173 5v8* \$174 KTS	HFT.KMESLNFTRAHTP	VINT VNCEPANPSRRH	HEKNSPSTOVC
E174 5x8* K175 KIS	HFLKMESLNFIRAHTP	YINIYNCEPANPSEHH	HERNSPSTOYC
R175 5xH* N176	HFLKMESLNFIRAHTP	YINIYNCEPANPSEKH	HHHNSPSTOYC
N176 5xH* S177KIS	HFLKMESLNFIRAHTP	YINIYNCEPANPSEKN	ANNASPSTOYC
S177 5xH* P178	HFLKMESLNFIRAHTP	YINIYNCEPANPSEKNS	HARREPSTOYC
P178 5xH* 5179KIS	HFLKMESLNFIRAHTF	YINIYNCEPANPSEKNS	PHHHHHSTQYC
S179 5xH* T180KIS	HFLEMESLNFIRAHTP	YINIYNCEPANPSEKNS	SPSRHRHRTQYC
T180 5xH* Q181KIS	HFLEMESLNFIRAHTP	YINIYNCEPANPSEKNS	PSTHHHHHQYC
Q181 5xH* Y182 KIS	HFLKMESLNFIRAHTP	YINIYNCEPANPSEKNS	SPSTQHHHHHYC
1162 DXH* C183KIS	HE LAMESLAFIKAHTP	TINTINGEPANPSERNS	Parginkanac

FIG. 2. The $5 \times H^*$ tag was inserted into the large extracellular region of CD20.

unit) (Cat. No. 230-01103; RayBiotech Life, Inc., Norcross, GA), 50 μ g per mouse of using Imject Alum (Thermo Fisher Scientific, Inc.) to develop an anti-His-tag mAb although our initial goal was to develop the anti-S2 spike protein of SARS-CoV-2 (www.med-tohoku-antibody.com/topics/001_paper_antibody_PDIS.htm#SARS-CoV-2).

The procedure included three additional immunizations with SARS-CoV-2 spike protein (50 μ g per mouse), followed by a final booster injection of SARS-CoV-2 spike protein (50 μ g per mouse) 2 days before harvesting splenic cells. Splenocytes were subsequently fused with P3U1 cells using polyethylene glycol 1500 (Roche Diagnostics, Indianapolis, IN). The hybridomas were then grown in RPMI 1640 supplemented with 10% FBS, 100 U/mL of penicillin, 100 μ g/mL of streptomycin, and 0.25 μ g/mL of amphotericin B, 5 μ g/mL of plasmocin (InvivoGen), and hypoxanthine/aminopterin/ thymidine (HAT; Thermo Fisher Scientific, Inc.). N-terminal

FIG. 3. Epitope mapping of C_{20} Mab-11 using $5 \times H^*$ insertion mutants of CD20. The $5 \times H^*$ inserted into CD20 and its mutants were analyzed using flow cytometry. Each mutant was expressed on CHO-K1 cells and incubated with HisMab-1 (A) or C_{20} Mab-11 (B) for 30 minutes at 4°C, followed by treatment with a secondary antibody. *Red lines*: treated with HisMab-1 or C_{20} Mab-11, *black lines*: without first antibodies as negative controls. CHO, Chinese hamster ovary.

A HisMab-1

Fluorescence intensity

B C₂₀Mab-11

Fluorescence intensity

EPITOPE MAPPING OF ANTI-CD20 MAbs

His-tag-positive wells were selected by enzyme-linked immunosorbent assay. After limiting dilution, HisMab-1 (mouse IgG_{2b} , kappa), which can detect His-tag of N-terminus and C-terminus, was established.

Establishment of a recombinant anti-His-tag mAb

To produce recombinant HisMab-1, we subcloned V_H and C_H of cDNAs of HisMab-1 into the pCAG-Neo vector, along with V_L and C_L cDNAs of HisMab-1 into the pCAG-Ble vector (FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan), respectively. Vectors of HisMab-1 were transfected into ExpiCHO cells using the ExpiCHO Expression System (Thermo Fisher Scientific, Inc.). The resulting mAb (recHisMab-1) was purified using Ab-Capcher (ProteNova, Kagawa, Japan).

Plasmid preparation

DNA encoding the CD20 gene (IRAL012D02) was provided by RIKEN BRC through the National BioResource Project of MEXT, Japan.^(15,16) The open reading frame of CD20 was subcloned into a pCAG-Ble vector (FUJIFILM Wako Pure Chemical Corporation). Insertions of 5-histidine tag $(5 \times H^*)$ in the second loop of CD20 were performed using the HotStar HiFidelity Polymerase Kit with oligonucleotides containing $5 \times H^*$ insertions at the selected position. Lys142_ $5 \times H^*$ _Ile143 (K142_ $5 \times H^*$ _Il43) was produced for instance by inserting the 5-histidine tag between Lys142 and Ile143 of CD20. Polymerase chain reaction fragments bearing the desired mutations were inserted into the pCAG-Ble vector using the In-Fusion HD Cloning Kit (Takara Bio, Inc., Shiga, Japan).

The $5 \times H^*$ insertion mutants produced were the following: K142_5×H*_I143, I143_5×H*_S144, S144_5×H*_H145, H145_5×H*_F146, F146_5×H*_L147, L147_5×H*_ K148, K148_5×H*_M149, M149_5×H*_E150, E150_5× H* S151, S151 5×H* L152, L152 5×H* N153, N153 5×H*_F154, F154_5×H*_I155, I155_5×H*_R156, R156_ 5×H*_A157, A157_5×H*_H158, H158_5×H*_T159, T159_5×H*_P160, P160_5×H*_Y161, Y161_5×H*_I162, $I162_5 \times H^*_N163$, N163_5×H*_I164, I164 5×H* Y165, Y165 5×H* N166, N166 5×H* C167, C167 5× H*_E168, E168_5×H*_P169, P169_5×H*_A170, A170_5× H* N171, N171 5×H* P172, P172 5×H* S173, S173 5×H* E174, E174 5×H* K175, K175 5×H* N176, S177_5×H*_P178, P178_5×H*_ N176 5×H* S177, S179, S179_5×H*_T180, T180_5×H*_Q181, Q181_5× H*_Y182, and Y182_5×H*_C183.

Flow cytometry

Cells were harvested after brief exposure to 0.25% trypsin/1 mM ethylenediaminetetraacetic acid (Nacalai Tesque, Inc.). After washing with 0.1% bovine serum albumin in phosphate-buffered saline, cells were treated with primary mAbs (1 μ g/mL) for 30 minutes at 4°C and subsequently with Alexa Fluor 488-conjugated anti-mouse IgG (1:1000; Cell Signaling Technology, Inc., Danvers, MA). Fluorescence data were collected using a BD FACSLyric (Becton, Dickinson and Company, Franklin Lakes, NJ) or EC800 Cell Analyzer (Sony Biotechnology Corp.) for HisMAP analyses.

Results

Production of His-tag-inserted CD20 mutants

We conducted HisMAP to investigate the C_{20} Mab-11 epitope. C_{20} Mab-11 can bind to CD20 when $5 \times H^*$ is inserted in any region independently on the C_{20} Mab-11 epitope (Fig. 1A). Contrastingly, C_{20} Mab-11 was not able to detect CD20 when $5 \times H^*$ was inserted into the C_{20} Mab-11 epitope region because the insertion of $5 \times H^*$ disrupted the conformation of the C_{20} Mab-11 epitope (Fig. 1B).

After $5 \times H^*$ was inserted into the large extracellular loop region of CD20, 41 mutant plasmids of CD20 were constructed. The mutant plasmids were transfected and transiently expressed on CHO-K1 cells (Fig. 2).

Determination of C_{20} Mab-11 epitopes using HisMAP

Mutant protein expressing CHO-K1 cells were treated with HisMab-1 (Fig. 3A) or C_{20} Mab-11 (Fig. 3B) and were analyzed using flow cytometry. Flow cytometry showed that HisMab-1, used as a positive control, was detected in all mutants (Fig. 3A). Thus, all mutant proteins were expressed on CHO-K1 cells. HisMab-1 did not react with CHO/CD20 because $5 \times H^*$ was not inserted into the wild type CD20 (Fig. 3A). Contrarily, C_{20} Mab-11 did not detect the three mutants (CHO/N171_5×H*_P172, CHO/P172_5×H*_S173, and CHO/S173_5×H*_E174) (Fig. 3B). Thus, four amino acids (Asn171, Pro172, Ser173, and Glu174) of CD20 were observed to be important for C_{20} Mab-11 binding (Fig. 4).

Determination of 2H7 epitope using HisMAP

Mutant protein expressed in CHO-K1 cells was treated with 2H7 (Fig. 5A), and analyzed using flow cytometry. Treatment with 2H7 was not able to detect the six mutants (CHO/E168_5×H*_P169, CHO/P169_5×H*_A170, CHO/ A170_5×H*_N171, CHO/N171_5×H*_P172, CHO/P172_ 5×H*_S173, and CHO/S173_5×H*_E174) (Fig. 5A). Thus, seven amino acids (Glu168, Pro169, Ala170, Asn171, Pro172, Ser173, and Glu174) of CD20 were observed to be important for 2H7 binding (Fig. 5B).

Discussion

In this study, we determined the binding epitope of C_{20} Mab-11 and 2H7 as $_{171}$ -NPSE- $_{174}$ and $_{168}$ -EPANPSE- $_{174}$ in the second loop, respectively (Figs. 3–5). The epitopes

FIG. 4. Schematic illustration of epitope mapping of C_{20} Mab-11. Schematic illustration of C_{20} Mab-11 and its epitope. Four amino acids (Asn171, Pro172, Ser173, and Glu174) of CD20 were important for the binding of C_{20} Mab-11 to CD20.

FIG. 5. (A) The $5 \times H^*$ was inserted into CD20, its mutants were analyzed using flow cytometry. Each mutant was expressed on CHO-K1 cells and incubated with 2H7 for 30 minutes at 4°C, followed by treatment with a secondary antibody. *Red lines*: treated with 2H7, *black lines*: without first antibodies as negative controls. (B) Schematic illustration of 2H7 and its epitope. Seven amino acids (Glu168, Pro169, Ala170, Asn171, Pro172, Ser173, and Glu174) of CD20 are important for the binding of 2H7 to CD20.

of several anti-CD20 mAbs have been determined.^(17–21) Rituximab recognizes a separated epitope of ₁₇₀-ANPS-₁₇₃ and ₁₈₂-YCYSI-₁₈₅ in the second loop.⁽¹⁷⁾ ₁₇₀-ANPSEKN-₁₇₆ is recognized by ocrelizumab,^(18,19) obinutuzumab,⁽²⁰⁾ and C₂₀Mab-60.⁽²¹⁾ Ofatumumab also recognizes a separated epitope of ₇₂-IPAGIYAPI-₈₀, in the first loop, and ₁₄₈-KMESLN FIRAHT-₁₅₉, in the second loop.⁽¹⁹⁾ CD20 mAbs are classified into type I (CDC and ADCC) and type II (programmed cell death and ADCC).^(8,22)

Type I mAbs, including rituximab and ofatumumab, stimulate the CD20 translocation into lipid rafts and potently activate CDC. ⁽²³⁾ Both type I and II mAbs have ADCC. Type II mAbs, including obinutuzumab and tositumomab, can induce caspase-independent cell death.⁽²⁴⁾ Since the isotype of C_{20} Mab-11 is IgM, a class switch to IgG is required to elucidate the functions of C_{20} Mab-11. Furthermore, the identification of the complementarity-determining regions of C_{20} Mab-11 is essential in understanding the key structural features of its recognition to CD20.

We have developed two novel epitope mapping methods, a RIEDL insertion for epitope mapping (REMAP) and HisMAP, to determine the epitopes of anti-EGFR mAbs (EMab-51 and EMab-134)^(25,26) and an anti-CD44 mAb $(C_{44}Mab-46)^{(27)}$ using the REMAP. The targets are type I transmembrane proteins and have conformational epitopes that cannot be determined by conventional methods, including deletion mutant and alanine scanning analyses. On the contrary, CD20 possesses four transmembrane domains and two extracellular loops (Fig. 1).

Previously, we reported that HisMab-1 can detect $4 \times H^*$, $5 \times H^*$, and $6 \times H^*$ inserted into a target protein, using flow cytometry.⁽²¹⁾ We further optimized HisMAP and determined that $5 \times H^*$ insertion was minimally required. $5 \times H^*$ was inserted into the large extracellular loop of CD20 (Fig. 2). Although the reactivity of HisMab-1 tended to decrease upon insertion of $5 \times H^*$ close to the transmembrane domain (Fig. 3A), the epitopes of C₂₀Mab-11 and 2H7 were successfully determined. The $5 \times H^*$ insertion did not affect the exposure of the extracellular loop of CD20 and, therefore, HisMAP could be applied to determine the epitopes of proteins with several transmembrane domains. Further studies are needed to reveal the usefulness of HisMAP for the determination of the conformational epitopes of the other mAbs.

Author Disclosure Statement

No competing financial interests exist.

Funding Information

This research was supported, in part, by Japan Agency for Medical Research and Development (AMED) under Grant Nos. JP21am0401013 (to Y.K.) and JP21am0101078 (to Y.K.), and by the Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research (KAKENHI) Grant Nos. 21K15523 (to T.A.), 21K20789 (to T.T.), 21K07168 (to M.K.K.), and 19K07705 (to Y.K.).

References

1. Tedder TF, and Engel P: CD20: A regulator of cell-cycle progression of B lymphocytes. Immunol Today 1994;15: 450–454.

- Tedder TF, Streuli M, Schlossman SF, and Saito H: Isolation and structure of a cDNA encoding the B1 (CD20) cell-surface antigen of human B lymphocytes. Proc Natl Acad Sci U S A 1988;85:208–212.
- Tedder TF, Boyd AW, Freedman AS, Nadler LM, and Schlossman SF: The B cell surface molecule B1 is functionally linked with B cell activation and differentiation. J Immunol 1985;135:973–979.
- Armitage JO, Gascoyne RD, Lunning MA, and Cavalli F: Non-Hodgkin lymphoma. Lancet 2017;390:298–310.
- 5. Hallek M, Shanafelt TD, and Eichhorst B: Chronic lymphocytic leukaemia. Lancet 2018;391:1524–1537.
- Smith MR: Rituximab (monoclonal anti-CD20 antibody): Mechanisms of action and resistance. Oncogene 2003;22: 7359–7368.
- van Meerten T, and Hagenbeek A: CD20-targeted therapy: A breakthrough in the treatment of non-Hodgkin's lymphoma. Neth J Med 2009;67:251–259.
- 8. van Meerten T, and Hagenbeek A: CD20-targeted therapy: The next generation of antibodies. Semin Hematol 2010;47: 199–210.
- De Vita S, Zaja F, Sacco S, De Candia A, Fanin R, and Ferraccioli G: Efficacy of selective B cell blockade in the treatment of rheumatoid arthritis: Evidence for a pathogenetic role of B cells. Arthritis Rheum 2002;46:2029–2033.
- Edwards JC, Leandro MJ, and Cambridge G: B-lymphocyte depletion therapy in rheumatoid arthritis and other autoimmune disorders. Biochem Soc Trans 2002;30:824–828.
- 11. Sneller MC: Rituximab and Wegener's granulomatosis: Are B cells a target in vasculitis treatment? Arthritis Rheum 2005;52:1–5.
- Specks U, Fervenza FC, McDonald TJ, and Hogan MC: Response of Wegener's granulomatosis to anti-CD20 chimeric monoclonal antibody therapy. Arthritis Rheum 2001; 44:2836–2840.
- Collins CE, Quismorio FP, Jr.: Pulmonary involvement in microscopic polyangiitis. Curr Opin Pulm Med 2005;11: 447–451.
- 14. Eriksson P: Nine patients with anti-neutrophil cytoplasmic antibody-positive vasculitis successfully treated with rituximab. J Intern Med 2005;257:540–548.
- Furusawa Y, Kaneko MK, and Kato Y: Establishment of C(20)Mab-11, a novel anti-CD20 monoclonal antibody, for the detection of B cells. Oncol Lett 2020;20:1961–1967.
- Furusawa Y, Kaneko MK, and Kato Y: Establishment of an anti-CD20 monoclonal antibody (C(20)Mab-60) for immunohistochemical analyses. Monoclon Antib Immunodiagn Immunother 2020;39:112–116.
- Binder M, Otto F, Mertelsmann R, Veelken H, and Trepel M: The epitope recognized by rituximab. Blood 2006;108: 1975–1978.
- Du J, Wang H, Zhong C, Peng B, Zhang M, Li B, Hou S, Guo Y, and Ding J: Crystal structure of chimeric antibody C2H7 Fab in complex with a CD20 peptide. Mol Immunol 2008;45:2861–2868.
- Teeling JL, Mackus WJ, Wiegman LJ, van den Brakel JH, Beers SA, French RR, van Meerten T, Ebeling S, Vink T, Slootstra JW, Parren PW, Glennie MJ, van and de Winkel JG: The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J Immunol 2006;177:362–371.
- Niederfellner G, Lammens A, Mundigl O, Georges GJ, Schaefer W, Schwaiger M, Franke A, Wiechmann K, Jenewein S, Slootstra JW, Timmerman P, Brännström A,

Lindstrom F, Mössner E, Umana P, Hopfner KP, and Klein C: Epitope characterization and crystal structure of GA101 provide insights into the molecular basis for type I/II distinction of CD20 antibodies. Blood 2011;118:358–367.

- Asano T, Takei J, Furusawa Y, Saito M, Suzuki H, Kaneko MK, and Y. K: Epitope Mapping of an Anti-CD20 Monoclonal Antibody (C20Mab-60) using the HisMAP Method. Monoclon Antib Immunodiagn Immunother 2021;40:243–249.
- 22. Klein C, Lammens A, Schäfer W, Georges G, Schwaiger M, Mössner E, Hopfner KP, Umaña P, and Niederfellner G: Epitope interactions of monoclonal antibodies targeting CD20 and their relationship to functional properties. MAbs 2013;5:22–33.
- Cragg MS, Morgan SM, Chan HT, Morgan BP, Filatov AV, Johnson PW, French RR, and Glennie MJ: Complementmediated lysis by anti-CD20 mAb correlates with segregation into lipid rafts. Blood 2003;101:1045–1052.
- 24. Chan HT, Hughes D, French RR, Tutt AL, Walshe CA, Teeling JL, Glennie MJ, and Cragg MS: CD20-induced lymphoma cell death is independent of both caspases and its redistribution into triton X-100 insoluble membrane rafts. Cancer Res 2003;63:5480–5489.
- 25. Asano T, Kaneko MK, and Kato Y: RIEDL tag: A novel pentapeptide tagging system for transmembrane protein purification. Biochem Biophys Rep 2020;23:100780.

- 26. Sano M, Kaneko MK, Aasano T, and Kato Y: Epitope mapping of an antihuman EGFR monoclonal antibody (EMab-134) using the REMAP method. Monoclon Antib Immunodiagn Immunother 2021;40:191–195.
- 27. Asano T, Kaneko MK, Takei J, Tateyama N, and Kato Y: Epitope mapping of the anti-CD44 monoclonal antibody (C44Mab-46) using the REMAP method. Monoclon Antib Immunodiagn Immunother 2021;40:156–161.

Address correspondence to: Yukinari Kato Department of Molecular Pharmacology Tohoku University Graduate School of Medicine 2-1, Seiryo-machi, Aoba-ku Sendai 980-8575 Miyagi Japan

E-mail: yukinarikato@med.tohoku.ac.jp

Received: October 14, 2021 Accepted: November 30, 2021