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Epitope Mapping of an Antihuman EGFR Monoclonal
Antibody (EMab-134) Using the REMAP Method

Masato Sano,1 Mika K. Kaneko,1 Teizo Aasano,1 and Yukinari Kato1,2,i

The epidermal growth factor receptor (EGFR) is a tyrosine kinase receptor that plays an important role in
normal epidermal cell physiology. EGFR is overexpressed in cancer cells and has a number of mutations that
implicate tumor malignancy, development, and poor patient prognosis; thus, EGFR is an attractive target for
cancer therapy. At present, anti-EGFR monoclonal antibodies (mAbs) have been approved and are used for
treating patients with a variety of EGFR-expressing cancers. Epitope mapping is important in identifying the
therapeutic mechanism of anti-EGFR mAbs; however, the development of epitope mapping techniques lags
behind the development of antimolecular target mAbs, including anti-EGFR mAbs. Hence, in this study, a
novel epitope mapping method, RIEDL insertion for epitope mapping (REMAP) method, was developed. The
results of this study demonstrated that the critical epitope of anti-EGFR mAb EMab-134 is Gly378, Asp379,
Ser380, Phe381, Thr382, His383, Thr384, Pro385, and Pro386 of EGFR. The REMAP method could be useful
for determining the critical epitope of functional mAbs against many target molecules.

Keywords: EGFR, EMab-134, epitope mapping, monoclonal antibody, RIEDL tag

Introduction

T he epidermal growth factor receptor (EGFR) is a
tyrosine kinase receptor, closely related to human epi-

dermal receptor 2 (HER2), HER3, and HER4.(1,2) EGFR is
activated by ligand binding and it promotes cell progression
by activating the ERK, MAPK, AKT-PI3K, and PLC-g1-
PKC pathways.(3–6) EGFR is overexpressed in various can-
cers and is usually associated with the survival, proliferation,
invasion, and drug resistance of cancer cells.(7,8) Therefore,
the EGFR expression is a poor prognostic factor for cancer
patients and EGFR is an attractive target for cancer therapy.
Although EGFR-targeting therapies, such as EGFR tyrosine
kinase inhibitors and anti-EGFR monoclonal antibodies
(mAbs), show some antitumor efficacy in clinical trials, tu-
mors can evolve with EGFR-resistant mutations, thereby
causing failure of these therapies.(9–14) Thus, EGFR-targeting
drugs are needed to overcome these mutations.

Four anti-EGFR antibodies, cetuximab, panitumumab,
nimotuzumab, and necitumumab, have been developed for
clinical use in the treatment of colorectal cancer, head and
neck squamous cell carcinoma, glioblastoma, gastric cancer,
and squamous nonsmall cell lung cancer.(15–22) Epitope
mapping of these mAbs using structural analysis reveals that
they bind to different amino acid (aa) residues of domain III

of EGFR and inhibit binding of the EGFR ligands, such as
EGF.(23–26) The structural analysis revealed that panitumu-
mab binds to the cetuximab-resistant EGFR K467T mutant,
whereas necitumumab binds to cetuximab- and
panitumumab-resistant EGFR mutants.(23,24,26) Therefore,
epitope mapping is important in determining the therapeutic
and molecular mechanisms of mAbs.

Epitopes of mAbs are generally divided into two types:
linear and conformational epitopes. Linear epitopes are
formed by continuous aa residues (£16 aa), whereas confor-
mational epitopes are not continuous and are formed by three-
dimensional peptides combined by protein folding.(27) There
are several conformational epitope mapping methods, such as
X-ray cocrystallography, cryogenic electron microscopy,
site-directed mutagenesis mapping, high-throughput shotgun
mutagenesis epitope mapping, and hydrogen–deuterium ex-
change mass spectrometry.(28–32) X-ray cocrystallography
and cryogenic electron microscopy can precisely determine
the antibody binding sites, but these methods are highly
technical, time consuming, and expensive. In site-directed
mutagenesis mapping and high-throughput shotgun muta-
genesis epitope mapping, it is challenging to map a part of a
conformational epitope because a single aa residue mutation
is not enough to disrupt the antibody–antigen interaction.
Currently, large number of mAbs have been obtained as
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FIG. 1. Epitope mapping using RIEDL tag-inserted mutants of EGFR/dN313. The RIEDL tag-inserted mutants were
incubated with (A) NZ-1 (an anti-PAtag mAb), (B) LpMab-7 (an anti-RIEDL tag mAb), or (C) EMab-134. Black lines:
control (without 1st mAb). EGFR, epidermal growth factor receptor; mAb, monoclonal antibody.
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therapeutic drugs against many diseases; however, the speed
of epitope mapping techniques has not kept pace with the
increasing number of isolated mAbs.(31,33)

In this study, a novel epitope mapping technique using the
RIEDL tag system(34) was developed. Then, the epitope of
anti-EGFR mAb (clone EMab-134)(35) was characterized
using the RIEDL insertion for epitope mapping (REMAP)
method.

Materials and Methods

Cell lines

Chinese hamster ovary (CHO)-K1 cells were obtained
from the America Type Culture Collection (ATCC, Mana-
ssas, VA). The EGFR mutation plasmids were transfected
into the CHO-K1 cells using the Neon Transfection System
(Thermo Fisher Scientific, Inc., Waltham, MA) and stable
transfectants were sorted using a cell sorter (SH800; Sony
Corp., Tokyo, Japan). The CHO-K1 cells and transfectants
were cultured in RPMI 1640 medium (Nacalai Tesque, Inc.,
Kyoto, Japan) supplemented with 10% heat-inactivated fetal
bovine serum (Thermo Fisher Scientific, Inc.), 100 U/mL
penicillin, 100 lg/mL streptomycin, and 0.25 lg/mL am-
photericin B (Nacalai Tesque, Inc.) at 37�C in a humidified
atmosphere containing 5% CO2. The transfectants were
cultivated in a medium containing 0.5 mg/mL Zeocin (In-
vivoGen, San Diego, CA).

Plasmid preparation

The EGFR open reading frames were amplified as described
previously.(36) The EGFR deletion mutants (EGFR/dN313)
were produced using the HotStar HiFidelity Polymerase Kit
(Qiagen, Inc., Hilden, Germany) with oligonucleotides con-
taining the desired mutations. The PA tag (GVAMP-
GAEDDVV) was added at the N-terminus,(37) which is
recognized by an anti-PA tag mAb (NZ-1).(38) The RIEDL
tag(34) was inserted into the EGFR sequence using the HotStar
HiFidelity Polymerase Kit with oligonucleotides containing
the RIEDL tag insertions at the desired position in 375-

-AFRGDSFTHTPPLDP-389 of EGFR/dN313. For example,
Ala375_RIEDL_Phe376 (A375_R*_F376) was produced by
inserting the RIEDL sequence between Ala375 and Phe376 of
EGFR/dN313. The polymerase chain reaction fragments with
the desired mutations were inserted into the pCAG-Ble vector
using the In-Fusion HD Cloning Kit (Takara Bio, Inc.,
Shiga, Japan). The following RIEDL tag insertion mutants
were produced: Ala375_RIEDL_Phe376 (A375_R*_F376),
Phe376_RIEDL_Arg377 (F376_R*_R377), Arg377_RIEDL_
Gly378 (R377_R*_G378), Gly378_RIEDL_Asp379 (G378_
R*_D379), Asp379_RIEDL_Ser380 (D379_R*_S380),
Ser380_RIEDL_Phe381 (S380_R*_F381), Phe381_RIEDL_
Thr382 (F381_R*_T382), Thr382_RIEDL_His383 (T382_
R*_H383), His383_RIEDL_Thr384 (H383_R*_T384),
Thr384_RIEDL_Pro385 (T384_R*_P385), Pro385_RIEDL_
Pro386 (P385_R*_P386), Pro386_RIEDL_Leu 387 (P386_
R*_L387), Leu387_RIEDL_Asp388 (L387_R*_D388), and
Asp388_RIEDL_Pro389 (D388_R*_P389).

Flow cytometry

The cells were harvested by a brief exposure to 0.25%
trypsin/1 mM ethylenediaminetetraacetic acid (Nacalai Tes-

que, Inc.). After washing the cells with 0.1% bovine serum
albumin in phosphate-buffered saline, they were treated with
primary mAbs (1 or 10 lg/mL) for 30 minutes at 4�C and then
with Alexa Fluor 488-conjugated antimouse immunoglobu-
lin G (IgG) or antirat IgG (1:1000; Cell Signaling Technol-
ogy, Inc., Danvers, MA). Fluorescence data were collected
using the EC800 Cell Analyzer (Sony Corp.).

Results and Discussion

In our previous study, the critical epitope of an anti-
EGFR mAb (EMab-134)(35) was determined to be

377-RGDSFTHTPP-386 from domain III of the extracellular
region of EGFR using site-directed mutagenesis epitope
mapping.(39) In this study, the epitope of EMab-134 was
characterized using a novel epitope mapping technique: RE-
MAP method.

We produced 14 EGFR/dN313 transfectants (an N-terminal
PA tag and EGFR from aa 313 to 1210), in which a RIEDL tag
was inserted into the expected epitope region at each possible
position of 375-AFRGDSFTHTPPLDP-389 (Fig. 1). The
LpMab-7 (an anti-RIEDL tag mAb) recognized the five aa-long
RIEDL tag.(34) For example, we produced Ala375_
RIEDL_Phe376 (A375_R*_F376) by inserting the RIEDL
sequence between Ala375 and Phe376 of EGFR/dN313.

Flow cytometry analysis showed that positive control
NZ-1 (an anti-PA tag mAb) detected wild type (WT) and 14
mutants of EGFR/dN313 (Fig. 1A). Because RIEDL se-
quence was not inserted into WT, LpMab-7 did not react with
WT, but reacted with 14 mutants of EGFR/dN313 (Fig. 1B).
In contrast, EMab-134 did not react with eight mutants, such
as Gly378_RIEDL_Asp379 (G378_R*_D379), Asp379_
RIEDL_Ser380 (D379_R*_S380), Ser380_RIEDL_Phe381
(S380_R*_F381), Phe381_RIEDL_Thr382 (F381_R*_
T382), Thr382_RIEDL_His383 (T382_R*_H383), His383_
RIEDL_Thr384 (H383_R*_T384), Thr384_RIEDL_Pro385
(T384_R*_P385), and Pro385_RIEDL_Pro386 (P385_R*_
P386), although it strongly detected six mutants, such
as Ala375_RIEDL_Phe376 (A375_R*_F376), Phe376_
RIEDL_Arg377 (F376_R*_R377), Arg377_RIEDL_Gly378

FIG. 2. Schematic illustration of EMab-134 epitopes.
‘‘GDSFTHTPP’’ is a critical epitope of EMab-134. PA, PA
tag.
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(R377_R*_G378), Pro386_RIEDL_Leu387 (P386_R*_L387),
Leu387_RIEDL_Asp388 (L387_R*_D388), and Asp388_
RIEDL_Pro389 (D388_R*_P389) (Fig. 1C), indicating
that EMab-134 might bind to EGFR through nine aas
(378-GDSFTHTPP-386). These results are summarized in
Figure 2.

As described in this study, the REMAP method may also
be suitable for the mapping of linear and conformational
epitopes of a number of anti-EGFR mAbs, including those
used in preclinical or clinical trials. This could reveal novel
therapeutic mechanisms of anti-EGFR mAbs. Furthermore,
there are a number of mAbs for which the antigen binding site
has not been identified. The REMAP method might be able to
characterize the epitope of these mAbs in a future study.
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