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Abstract: Cluster of differentiation 44 (CD44) promotes tumor progression through the recruitment of
growth factors and the acquisition of stemness, invasiveness, and drug resistance. CD44 has multiple
isoforms including CD44 standard (CD44s) and CD44 variants (CD44v), which have common and unique
functions in tumor development. Therefore, elucidating the function of each CD44 isoform in a tumor is
essential for the establishment of CD44-targeting tumor therapy. We have established various anti-CD44s
and anti-CD44v monoclonal antibodies (mAbs) through the immunization of CD44v3–10-overexpressed
cells. In this study, we established C44Mab-6 (IgG1, kappa), which recognized the CD44 variant 3-encoded
region (CD44v3), as determined via an enzyme-linked immunosorbent assay. C44Mab-6 reacted with
CD44v3–10-overexpressed Chinese hamster ovary (CHO)-K1 cells (CHO/CD44v3–10) or some cancer
cell lines (COLO205 and HSC-3) via flow cytometry. The apparent KD of C44Mab-6 for CHO/CD44v3–10,
COLO205, and HSC-3 was 1.5 × 10−9 M, 6.3 × 10−9 M, and 1.9 × 10−9 M, respectively. C44Mab-6
could detect the CD44v3–10 in Western blotting and stained the formalin-fixed paraffin-embedded tumor
sections in immunohistochemistry. These results indicate that C44Mab-6 is useful for detecting CD44v3 in
various experiments and is expected for the application of tumor diagnosis and therapy.

Keywords: CD44; CD44 variant 3; monoclonal antibody; flow cytometry; immunohistochemistry

1. Introduction

The cell surface glycoprotein known as cluster of differentiation 44 (CD44) is broadly
expressed by epithelial, mesenchymal, and hematopoietic cells and is involved in adhesion
to the extracellular matrix (ECM), lymphocyte homing, and lymphocyte activation [1].
A growing body of evidence reveals the critical roles of CD44 in tumor progression and
metastasis [2,3]. The human CD44 gene consists of 19 exons, 10 of which are constant in
all variants, and makes up the standard form of CD44 (CD44s) [4]. Furthermore, a large
number of CD44 variants (CD44v) are generated due to alternative splicing. The CD44v
consists of 10 constant exons in combination with the remaining 9 variant exons.

The translated CD44 usually receives post-translational modifications, such as N-/O-linked
glycosylation or proteoglycans, including chondroitin sulfate, keratan sulfate, and heparan
sulfate, which lead to further diversity in CD44 function [5–8]. Therefore, the molecular weights
of CD44s and CD44v are 75–95 kDa and 100~250 kDa, respectively [5]. These CD44 isoforms
have both overlapping and unique functions. Both CD44s and CD44v (pan-CD44) possess
hyaluronic acid (HA)-binding motifs that promote interaction with the microenvironment,
which mediates cellular homing, migration, adhesion, and proliferation [9].
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CD44v is overexpressed in tumors, and it plays critical roles in the promotion of tumor
invasion, metastasis, cancer-initiating properties [10], and resistance to therapies [2,11].
CD44v has the ability to bind to heparin-binding growth factors, including fibroblast growth
factors (FGFs) [7]. These growth factors bind to a heparan sulfate side chain attached to
the SGSG sequence encoded by variant exon 3 [7,12]. Heparan sulfate proteoglycans play
critical roles in cell proliferation and motility through presenting the growth factors to
receptors. Therefore, the CD44 variant exon 3-containing isoform (CD44v3) can recruit
heparin-binding growth factors to their receptor and promote growth-factor-receptor-
mediated signal transduction [13–15]. Furthermore, the v6-encoded region forms a complex
with hepatocyte growth factor and its receptor MET, which is essential for activation [16].
The v8–10-encoded region interacts with a cystine–glutamate transporter (xCT) subunit
and mediates the oxidative stress resistance through the regulation of the intracellular
redox state [17].

Cancer stem cells (CSCs) exhibit important properties, such as self-renewal, resistance
to therapy, and the promotion of tumor metastasis [18–20]. Several cell surface and intra-
cellular proteins have been reported as CSC markers in hematopoietic malignancy and
solid tumors [21,22]. Among them, CD44 has been identified as a CSC marker in several
solid tumors. In breast cancer, the CD44+CD24−/lowLineage− population was first shown
to be 10- to 50-fold enriched with the ability to form tumors in immunodeficient mice
relative to unfractionated tumor cells [23]. In head and neck squamous cell carcinoma
(HNSCC), the CD44-high CSCs from HNSCC exhibited elevated migration, invasiveness,
and stemness [24,25] and could form metastatic foci in the lungs of immunodeficient mice.
In contrast, the CD44-low populations failed to form the metastatic proliferation [26]. In the
above studies, anti-pan-CD44 monoclonal antibodies (mAbs) were used to isolate the CSCs
from cultured cells and patient-derived tumor tissues. Furthermore, several CD44v-specific
mAbs were reported to separate CSCs from colorectal cancer by using anti-CD44v6 [27] and
anti-CD44v9 [28] mAbs. Therefore, specific mAbs against CD44s and CD44v are required
for the isolation of CSCs and the analysis of their properties in detail.

By using the Cell-Based Immunization and Screening (CBIS) method, we established
an anti-pan-CD44 mAb, namely, C44Mab-5 (IgG1, kappa) [29]. We further established
another anti-pan-CD44 mAb, namely, C44Mab-46 (IgG1, kappa), via the immunization of
CD44v3–10 ectodomain (CD44ec) [30]. Both C44Mab-5 and C44Mab-46 have been revealed
to recognize the standard exon (1 to 5)-encoding sequences at the N-terminus [31–33].
Furthermore, both C44Mab-5 and C44Mab-46 are available for flow cytometry and im-
munohistochemical analyses in oral squamous cell carcinomas (OSCC) [29] and esophageal
squamous cell carcinomas [30]. We further converted the mouse IgG1 subclass antibody
(C44Mab-5) into an IgG2a subclass antibody (5-mG2a) and further produced a defucosylated
version (5-mG2a-f) by using fucosyltransferase 8-deficient ExpiCHO-S (BINDS-09) cells.
The 5-mG2a-f exhibited in vitro antibody-dependent cellular cytotoxicity (ADCC) activity
against OSCC cell lines (HSC-2 and SAS). Furthermore, the 5-mG2a-f suppressed the growth
of the HSC-2 and SAS xenograft [34].

Recently, we established an anti-CD44v5 mAb [35] and an anti-CD44v6 mAb [36] via
the CBIS method, an anti-CD44v7/8 mAb [37] via the immunization of CD44ec, and an
anti-CD44v4 mAb via peptide immunization [38]. In this study, we developed a novel
anti-CD44v3 mAb, namely, C44Mab-6 (IgG1, kappa), via the CBIS method and evaluated
its applications, such as flow cytometry, Western blot, and immunohistochemical analyses.

2. Results
2.1. Development of C44Mab-6 as an anti-CD44v3 mAb

The CBIS method involves the immunization of antigen-overexpressed cells and high-
throughput hybridoma screening by using flow cytometry. We prepared CD44v3–10-overexpressed
Chinese hamster ovary (CHO)-K1 cells (CHO/CD44v3–10), as an immunogen (Figure 1). The cells
were immunized into mice, and hybridomas were plated into 96-well plates. We next performed
flow-cytometry-based, high-throughput screening to select the supernatants, which were positive
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for CHO/CD44v3–10 cells and negative for CHO-K1 cells. After the limiting dilution, anti-CD44
mAb-producing clones were finally established. Among them, C44Mab-6 (IgG1, kappa) was
shown to recognize CD44 p231–250 peptide (AGWEPNEENEDERDRHLSFS), which corresponds
to variant-3-encoded sequence (Figure 2 and Supplementary Table S1). In contrast, C44Mab-6
never recognized other extracellular region peptides of CD44v3-10. These results indicated that
C44Mab-6 specifically recognizes the CD44 variant 3-encoded sequence.
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Figure 1. Anti-human CD44 mAbs production. (A) The CD44 structure. CD44s mRNA is assembled by
the first five (1 to 5) and the last five (16 to 20) exons and translates CD44s. CD44v mRNAs are generated
by the alternative splicing of variant exons and translate multiple CD44v isoforms, such as CD44v3-10,
CD44v4-10, CD44v6-10, and CD44v8-10. (B) BALB/c mice were intraperitoneally immunized with
CHO/CD44v3–10 cells. (C) The hybridomas were produced via fusion of the splenocytes and P3U1
cells. (D) The flow cytometry-mediated screening was conducted by using parental CHO-K1 and
CHO/CD44v3–10 cells. (E) After cloning and additional screening, a clone C44Mab-6 (IgG1, kappa)
was established. Finally, the binding epitope was determined via enzyme-linked immunosorbent assay
(ELISA) by using peptides, which cover the extracellular domain of CD44v3–10.
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Figure 2. Determination of C44Mab-6 epitope by ELISA. The synthesized peptides, which cover the
CD44v3–10 extracellular domain, were immobilized on immunoplates. The plates were incubated
with C44Mab-6, followed by incubation with peroxidase-conjugated anti-mouse immunoglobulins.
Optical density was measured at 655 nm. The CD44 p231–250 sequence (AGWEPNEENEDER-
DRHLSFS) corresponds to the variant 3-encoded sequence. ELISA: enzyme-linked immunosorbent
assay. NC: negative control (solvent; DMSO in PBS).

2.2. The Reactivity of C44Mab-6 to CD44-Expressing Cells in Flow Cytometry

The reactivity of C44Mab-6 to CHO/CD44v3–10, CHO/CD44s, and CHO-K1 cells was
investigated by using flow cytometry. C44Mab-6 dose-dependently recognized CHO/
CD44v3–10 cells (Figure 3A). In contrast, C44Mab-6 recognized neither CHO/CD44s
(Figure 3B) nor CHO-K1 (Figure 3C) cells. C44Mab-46, which is an anti-pan-CD44 mAb [30],
recognized both CHO/CD44v3–10 and CHO/CD44s cells (Supplementary Figure S1). We
next examined the reactivity of C44Mab-6 to a colorectal cancer cell line (COLO205) and an
OSCC cell line (HSC-3). COLO205 was selected in this study from various cancer cell lines
because C44Mab-6 showed very high reactivity to it. Furthermore, HSC-3 was selected
because HNSCC was shown to be the second highest CD44-expressing cancer type in the
Pan-Cancer Atlas [39]. C44Mab-6 could recognize a colorectal cancer cell line COLO205
(Figure 3D) and an oral squamous cell line HSC-3 (Figure 3E) in a dose-dependent manner.

2.3. The Binding Affinity of C44Mab-6 to CD44-Expressing Cells

The binding affinity of C44Mab-6 to CHO/CD44v3–10, COLO205, and HSC-3 was
determined by using flow cytometry. As shown in Figure 4, the KD of CHO/CD44v3–10
COLO205 and HSC-3 was determined as 1.5 × 10−9 M, 6.3 × 10−9 M, and 1.9 × 10−9 M,
respectively. These results indicated that C44Mab-6 possesses a high affinity for CD44v3–10
and endogenous CD44v3-expressing cells.



Int. J. Mol. Sci. 2023, 24, 8411 5 of 17
Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 6 of 18 
 

 

 

Figure 3. The reactivity of C44Mab-6 to CD44-expressing cells in flow cytometry. CHO/CD44v3–10 

(A), CHO/CD44s (B), CHO-K1 (C), COLO205 (D), and HSC-3 (E) cells were treated with C44Mab-6 

at 0.01–10 µg/mL, followed by treatment with anti-mouse IgG conjugated with Alexa Fluor 488 (Red 

line). Black line: negative control (blocking buffer). 

2.3. The Binding Affinity of C44Mab-6 to CD44-Expressing Cells 

The binding affinity of C44Mab-6 to CHO/CD44v3–10, COLO205, and HSC-3 was de-

termined by using flow cytometry. As shown in Figure 4, the KD of CHO/CD44v3–10 

COLO205 and HSC-3 was determined as 1.5 × 10−9 M, 6.3 × 10−9 M, and 1.9 × 10−9 M, re-

spectively. These results indicated that C44Mab-6 possesses a high affinity for CD44v3–10 

and endogenous CD44v3-expressing cells. 

Figure 3. The reactivity of C44Mab-6 to CD44-expressing cells in flow cytometry. CHO/CD44v3–10 (A),
CHO/CD44s (B), CHO-K1 (C), COLO205 (D), and HSC-3 (E) cells were treated with C44Mab-6 at 0.01–10
µg/mL, followed by treatment with anti-mouse IgG conjugated with Alexa Fluor 488 (Red line). Black
line: negative control (blocking buffer).



Int. J. Mol. Sci. 2023, 24, 8411 6 of 17Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 7 of 18 
 

 

 

Figure 4. The binding affinity of C44Mab-6 to CD44-expressing cells. CHO/CD44v3–10 (A), 

COLO205 (B), and HSC-3 (C) cells were suspended in C44Mab-6 at the indicated concentrations. 

Cells were incubated with Alexa Fluor 488-conjugated secondary antibody. Fluorescence data were 

collected, and the apparent dissociation constant (KD) was calculated by using GraphPad Prism 8. 

2.4. Western Blot Analysis 

Western blot analysis was preformed to investigate the specificity of C44Mab-6. As 

shown in Figure 5A, C44Mab-6 detected CD44v3–10 as showing more than 180-kDa bands. 

However, C44Mab-6 did not detect any bands from lysates of CHO-K1 and CHO/CD44s 

cells at more than 48-kDa. An anti-pan-CD44 mAb, namely, C44Mab-46, recognized the 

lysates from both CHO/CD44s (~75 kDa) and CHO/CD44v3–10 (>180 kDa) (Figure 5B). 

These results indicated that C44Mab-6 specifically detects exogenous CD44v3–10 but not 

CD44s. 

Figure 4. The binding affinity of C44Mab-6 to CD44-expressing cells. CHO/CD44v3–10 (A),
COLO205 (B), and HSC-3 (C) cells were suspended in C44Mab-6 at the indicated concentrations.
Cells were incubated with Alexa Fluor 488-conjugated secondary antibody. Fluorescence data were
collected, and the apparent dissociation constant (KD) was calculated by using GraphPad Prism 8.

2.4. Western Blot Analysis

Western blot analysis was preformed to investigate the specificity of C44Mab-6. As
shown in Figure 5A, C44Mab-6 detected CD44v3–10 as showing more than 180-kDa bands.
However, C44Mab-6 did not detect any bands from lysates of CHO-K1 and CHO/CD44s
cells at more than 48-kDa. An anti-pan-CD44 mAb, namely, C44Mab-46, recognized the
lysates from both CHO/CD44s (~75 kDa) and CHO/CD44v3–10 (>180 kDa) (Figure 5B).
These results indicated that C44Mab-6 specifically detects exogenous CD44v3–10 but
not CD44s.
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Figure 5. Western blot analysis by using C44Mab-6. The cell lysates of CHO-K1, CHO/CD44s, and
CHO/CD44v3–10 (10 µg) were electrophoresed and transferred onto polyvinylidene fluoride mem-
branes. The membranes were incubated with 10 µg/mL of C44Mab-6 (A), 10 µg/mL of C44Mab-46
(B), and 1 µg/mL of an anti-β-actin mAb (C). Then, the membranes were incubated with anti-mouse
immunoglobulins conjugated with peroxidase. The black arrow indicates the CD44s (~75 kDa). The red
arrows indicate the CD44v3–10 (>180 kDa).

2.5. Immunohistochemical Analysis by Using C44Mab-6 against Tumor Tissues

Immunohistochemical analysis against the formalin-fixed paraffin-embedded (FFPE)
sections of OSCC was conducted to assess the availability of C44Mab-6. We used sequential
sections of OSCC tissue microarray and compared the staining patterns of C44Mab-6 and
C44Mab-46. Clear membranous staining was observed for C44Mab-6 and C44Mab-46 in a
well-differentiated OSCC section (Figure 6A,B). Figure 6C,D showed an OSCC section with
the stromal invaded phenotype. C44Mab-6 strongly stained stromal-invaded OSCC and could
clearly distinguish tumor cells from the surrounding stroma cells (Figure 6C). In contrast,
C44Mab-46 stained both invaded tumor and stromal cells (Figure 6D). In Figure 6E,F, C44Mab-6
partially stained tumor cells but not stromal cells (Figure 6E). In contrast, C44Mab-46 mainly
stained stromal cells (Figure 6F). We summarized the data of immunohistochemical analysis of
CD44 expression in tumor cells in Table 1; C44Mab-6 stained 44 out of 50 (88%) cases of OSCC.
We also stained FFPE sections of colorectal cancer tissue microarray and found that C44Mab-6
stained 7 out of 40 (18%) cases (Supplementary Table S2). However, the C44Mab-6 reactivity
was faint and partly localized compared to that of C44Mab-46 (Supplementary Figure S2).
These results indicated that C44Mab-6 is useful for the immunohistochemical analysis of FFPE
tumor sections.
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rays. 
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1 78 M Tongue SCC of tongue T2N0M0 1 Malignant ++ + 

2 40 M Tongue SCC of tongue T2N0M0 1 Malignant ++ ++ 

3 75 F Tongue SCC of tongue T2N0M0 1 Malignant + + 

4 35 F Tongue SCC of tongue T2N0M0 1 Malignant ++ ++ 

5 61 M Tongue SCC of tongue T2N0M0 1 Malignant +++ +++ 

6 41 F Tongue SCC of tongue T2N0M0 1 Malignant + + 

7 64 M Tongue SCC of right tongue T2N2M0 1 Malignant ++ ++ 
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9 50 F Tongue SCC of tongue T2N0M0 1 Malignant ++ ++ 

10 44 M Tongue SCC of tongue T2N1M0 1 Malignant +++ +++ 

Figure 6. Immunohistochemical analysis by using C44Mab-6 and C44Mab-46 against OSCC tissues.
After antigen retrieval, serial sections of OSCC tissue array (Catalog number: OR601c) were incubated
with 1 µg/mL of C44Mab-6 (A,C,E) or 1 µg/mL of C44Mab-46 (B,D,F), followed by treatment
with the Envision+ kit. The chromogenic reaction was conducted by using 3,3′-diaminobenzidine
tetrahydrochloride (DAB). The counterstaining was performed by using hematoxylin.
Scale bar = 100 µm.

Table 1. Immunohistochemical analysis by using C44Mab-6 and C44Mab-46 against OSCC tissue arrays.

No. Age Sex Anatomic Site Pathology Diagnosis TNM Grade Type C44Mab-6 C44Mab-46

1 78 M Tongue SCC of tongue T2N0M0 1 Malignant ++ +

2 40 M Tongue SCC of tongue T2N0M0 1 Malignant ++ ++

3 75 F Tongue SCC of tongue T2N0M0 1 Malignant + +

4 35 F Tongue SCC of tongue T2N0M0 1 Malignant ++ ++

5 61 M Tongue SCC of tongue T2N0M0 1 Malignant +++ +++

6 41 F Tongue SCC of tongue T2N0M0 1 Malignant + +

7 64 M Tongue SCC of right tongue T2N2M0 1 Malignant ++ ++

8 76 M Tongue SCC of tongue T1N0M0 1 Malignant ++ ++
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Table 1. Cont.

No. Age Sex Anatomic Site Pathology Diagnosis TNM Grade Type C44Mab-6 C44Mab-46

9 50 F Tongue SCC of tongue T2N0M0 1 Malignant ++ ++

10 44 M Tongue SCC of tongue T2N1M0 1 Malignant +++ +++

11 53 F Tongue SCC of tongue T1N0M0 1 Malignant ++ ++

12 46 F Tongue SCC of tongue T2N0M0 1 Malignant + +

13 50 M Tongue SCC of root of tongue T3N1M0 1 Malignant +++ +

14 36 F Tongue SCC of tongue T1N0M0 1 Malignant +++ +++

15 63 F Tongue SCC of tongue T1N0M0 1 Malignant ++ +

16 46 M Tongue SCC of tongue T2N0M0 1 Malignant +++ -

17 58 M Tongue SCC of tongue T2N0M0 1 Malignant + +

18 64 M Lip SCC of lower lip T1N0M0 1 Malignant +++ +++

19 57 M Lip SCC of lower lip T2N0M0 1 Malignant +++ +++

20 61 M Lip SCC of lower lip T1N0M0 1 Malignant ++ ++

21 60 M Gum SCC of gum T3N0M0 1 Malignant + +

22 60 M Gum SCC of gum T1N0M0 1 Malignant +++ +++

23 69 M Gum SCC of upper gum T3N0M0 1 Malignant ++ ++

24 53 M Bucca cavioris SCC of bucca cavioris T2N0M0 1 Malignant + +

25 55 M Bucca cavioris SCC of bucca cavioris T1N0M0 1 Malignant ++ +

26 58 M Tongue SCC of base of tongue T1N0M0 1 Malignant ++ ++

27 63 M Oral cavity SCC T1N0M0 1 Malignant ++ ++

28 48 F Tongue SCC of tongue T1N0M0 1–2 Malignant ++ +

29 80 M Lip SCC of lower lip T1N0M0 1–2 Malignant +++ +++

30 77 M Tongue SCC of base of tongue T2N0M0 1–2 Malignant +++ ++

31 59 M Tongue SCC of tongue T2N0M0 2 Malignant + -

32 77 F Tongue SCC of tongue T1N0M0 2 Malignant ++ ++

33 56 M Tongue SCC of root of tongue T2N1M0 2 Malignant + +

34 60 M Tongue SCC of tongue T2N1M0 2 Malignant ++ ++

35 62 M Tongue SCC of tongue T2N0M0 2 Malignant +++ ++

36 67 F Tongue SCC of tongue T2N0M0 2 Malignant +++ ++

37 47 F Tongue SCC of tongue T2N0M0 2 Malignant +++ +++

38 37 M Tongue SCC of tongue T2N1M0 2 Malignant - -

39 55 F Tongue SCC of tongue T2N0M0 2 Malignant ++ +

40 56 F Bucca cavioris SCC of bucca cavioris T2N0M0 2 Malignant +++ +

41 49 M Bucca cavioris SCC of bucca cavioris T1N0M0 2 Malignant - -

42 45 M Bucca cavioris SCC of bucca cavioris T2N0M0 2 Malignant - -

43 42 M Bucca cavioris SCC of bucca cavioris T3N0M0 2 Malignant +++ ++

44 44 M Jaw SCC of right drop jaw T1N0M0 2 Malignant ++ +++

45 40 F Tongue SCC of base of tongue T2N0M0 2 Malignant - ++

46 49 M Bucca cavioris SCC of bucca cavioris T1N0M0 2 Malignant +++ +++

47 56 F Tongue SCC of base of tongue T2N0M0 3 Malignant - +

48 42 M Bucca cavioris SCC of bucca cavioris T3N0M0 3 Malignant +++ +++

49 87 F Face SCC of left face T2N0M0 3 Malignant + +

50 50 M Gum SCC of gum T2N0M0 3 Malignant - -

-: No stain; +: Weak intensity; ++: Moderate intensity; +++: Strong intensity.
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3. Discussion

In this study, we developed C44Mab-6 by using the CBIS method (Figure 1) and determined
its epitope as a variant 3-encoded region of CD44 (Figure 2 and Supplemental Table S1). Then,
we showed the usefulness of C44Mab-6 for multiple applications, including flow cytometry
(Figures 3 and 4), Western blotting (Figure 5), and immunohistochemistry (Figure 6).

An anti-CD44v3 mAb (clone 3G5) was previously developed and widely used for
various applications [40]. The 3G5 was developed by the immunization of COS1-produced
CD44v3-10-Fc protein. The specificity to the exon was determined via indirect immunoflu-
orescent staining of COS1 cells which expressed CD44v3–10, CD44v6–10, CD44v7–10,
CD44v8–10, and CD44v10 [40]. Therefore, the 3G5 is thought to recognize the peptide
or glycopeptide structure of CD44v3. However, the detailed binding epitope of 3G5
has not been determined. As shown in Supplementary Table S1, C44Mab-6 recognized
CD44 p231–250 peptide (AGWEPNEENEDERDRHLSFS) but not CD44 p241–260 pep-
tides (DERDRHLSFSGSGIDDDEDF). The underlined SGSG sequence is a heparan sulfate-
modified sequence in the variant-3-encoded region [7,12]. Therefore, the recognition of
C44Mab-6 is probably not affected by the heparan sulfate modification.

Head and neck cancers are derived mainly from the oral cavity, larynx, pharynx,
and nasal cavity [41]. SCC is the common type. As shown in Figure 6, C44Mab-6 clearly
stained the membrane of OSCC and recognized a human OSCC cell line, namely, HSC-3
(Figures 3 and 4). The CD44v3-high and aldehyde dehydrogenase-1 (ALDH1)-high popula-
tion of HSC-3 exhibited a potent tumorigenic potential in immunodeficient NOD/SCID
mice [42]. The population showed increased stemness-related transcriptional factors,
including OCT4, SOX2, and NANOG [42]. In a future study, we will investigate the applica-
tion of C44Mab-6 to isolate cancer stem-like cells from cancer cell lines and/or OSCC tissues.
We will further establish the strategy to deplete the cancer stem-like cells for tumor therapy.
We have just started the cDNA cloning of C44Mab-6 heavy and light chains for therapeutic
application. We have investigated the antitumor activity by using class-switched and
defucosylated IgG2a mAbs [34,43–49]. The defucosylated IgG2a mAbs can be produced by
fucosyltransferases 8-deficient CHO-K1 cells, exhibited potent ADCC activity in vitro, and
suppressed the xenograft growth [34,43–49]. Therefore, the production of defucosylated
C44Mab-6 is one of the strategies to evaluate antitumor activity in vivo.

The HNSCC treatments include surgery, chemotherapy, radiotherapy, molecular tar-
geted therapy, immunotherapy, or a combination of these modalities [50]. Despite the
progress of the therapies, drug resistance and metastasis are still the main causes of
death [51]. In a preclinical study, a pan-CD44 mAb was applied to the novel modalities,
including near-infrared photoimmunotherapy (NIR-PIT). The CD44 mAb–photoactivatable
dye IRDye700DX conjugate exhibited significant antitumor effects after the NIR-light expo-
sure against CD44-expressing OSCC [52]. However, a pan-CD44 mAb, namely, C44Mab-46,
recognized not only tumor cells but also stromal tissues (Figure 6D,F) and probably im-
mune cells, which are important for antitumor immunity. Therefore, CD44v is a more
rational tumor antigen for NIR-PIT, which could be a new modality for OSCC with locore-
gional recurrence.

Zen et al. established a unique mAb (clone C3H7), which recognized the basolateral
membranes of epithelium and inhibited both the adhesion of epithelial cells to immobilized
CD11b/CD18 and the transepithelial migration of leukocytes [53]. CD11b/CD18, also
known as Macrophage-1 antigen, is a leukocyte integrin that is essential for firm adhesion
to epithelial cells and the transepithelial migration of leukocytes [54]. However, the re-
ceptor of CD11b/CD18 on epithelial cells has not been identified. They revealed that the
antigen of C3H7 is CD44v3, which specifically binds to CD11b/CD18 through its heparan
sulfate moieties [53]. The C3H7 antigen was increased via treatment with pro-inflammatory
cytokine, including interferon-γ and tumor necrosis factor-α in epithelial monolayers [53],
which supports the previous finding that CD44v3 is increased in inflammatory diseases,
including ulcerative colitis [55]. C44Mab-6 also recognized the basolateral surface of col-
orectal cancer cells (Supplementary Figure S2A). Further investigations are required for the
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relationship between CD44v3 expression and the transepithelial migration of leukocytes.
The study could provide the basis for the development of novel therapeutic applications of
anti-CD44v3 mAbs, including C44Mab-6.

Chimeric antigen receptor T-cell (CAR-T) therapies have been developed for a variety
of hematopoietic malignances and solid tumors [56]. CAR-T cells have demonstrated
remarkable success in treating CD19+ B cell leukemias [57]. However, CAR-T therapy
for acute myeloid leukemia (AML) has been elusive because of target restriction and
phenotypic heterogeneity [58]. Mutations of the FMS-like tyrosine kinase 3 (FLT3) and
DNA methyltransferase 3A (DNMT3A) genes were identified as common driver mutations
associated with poor prognosis of AML patients [59]. Tang et al. showed that AML cells
expressed high levels of CD44 mRNA, and the expression of AML-derived FLT3 and
DNMT3A mutants promote the transcription of CD44 mRNA through suppression of
CpG island methylation in the CD44 promoter [60]. They also found that AML patients
with FLT3 or DNMT3A mutations had higher expression of CD44v6 compared to normal
specimens. Furthermore, they showed that CD44v6 CAR-T cells exhibited potent anti-
leukemic effects [60]. Therefore, CD44v6 is thought to be a rational antigen of CAR-T
therapy for AML with FLT3 or DNMT3A mutations.

Since CD44 mRNA is upregulated in AML, there is a possibility that other CD44
variants are also transcribed and expressed in AML. In a humanized mouse model of
chronic myeloid leukemia (CML) progression from chronic phase to blast crisis, a CD44
variant (CD44v8–10) was elevated, which is required for the maintenance of stemness [61].
Although we have examined the reactivity of C44Mab-6 against cell lines derived from
hematopoietic malignancy and found increased reactivity in several cell lines, further
studies are required for the selective expression of CD44v3 in leukemia cells, but not in
hematopoietic stem cells, to ensure its safety as a CAR-T antigen.

4. Materials and Methods
4.1. Cell Lines

COLO205 (a human colorectal cancer cell line) was obtained from the Cell Resource
Center for Biomedical Research Institute of Development, Aging and Cancer at Tohoku
University (Sendai, Japan). HSC-3 (a human OSCC cell line) and LN229 (a human glioblastoma
cell line) were obtained from the Japanese Collection of Research Bioresources (Osaka, Japan).
P3X63Ag8U.1 (P3U1: a mouse multiple myeloma) and CHO-K1 cell lines were obtained
from the American Type Culture Collection (ATCC, Manassas, VA, USA). HSC-3 and LN229
were cultured in Dulbecco’s Modified Eagle Medium (DMEM) (Nacalai Tesque, Inc., Kyoto,
Japan), supplemented with 10% (v/v) heat-inactivated fetal bovine serum (FBS; Thermo Fisher
Scientific, Inc., Waltham, MA, USA), 100 U/mL of penicillin, 100 µg/mL streptomycin, and
0.25 µg/mL amphotericin B. CHO-K1, COLO205, and P3U1 were cultured in Roswell Park
Memorial Institute (RPMI)-1640 medium (Nacalai Tesque, Inc.) supplemented with 10% FBS
and antibiotics, as indicated above. All the cells were grown in a humidified incubator at
37 ◦C with 5% CO2.

4.2. Construction of Expression Plasmids and Stable Transfectants

By using LN229 cDNA as a template, CD44s cDNA was amplified by using Hot-
Star HiFidelity Polymerase Kit (Qiagen Inc., Hilden, Germany). We obtained CD44v3–10
cDNA from the RIKEN BRC through the National Bio-Resource Project of the MEXT,
Japan. The CD44s and CD44v3–10 cDNAs were cloned into pCAG-Ble-ssPA16 vector
with signal sequence and N-terminal PA16 tag (GLEGGVAMPGAEDDVV) [29,62–65],
which is detected by NZ-1, which was originally developed as an anti-human podoplanin
mAb [66–81]. The pCAG-Ble/PA16-CD44s and pCAG-Ble/PA16-CD44v3–10 vectors were
transfected into CHO-K1 cells by using a Neon transfection system (Thermo Fisher Sci-
entific, Inc.), and CHO/CD44s and CHO/CD44v3–10 were finally established, as de-
scribed previously [36].
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4.3. Production of Hybridomas

All animal experiments were approved by the Animal Care and Use Committee of
Tohoku University (Permit number: 2019NiA-001). The female BALB/c mice (CLEA Japan,
Tokyo, Japan) were intraperitoneally immunized with CHO/CD44v3–10 (1× 108 cells) with
Imject Alum (Thermo Fisher Scientific Inc.) as an adjuvant. The three additional immuniza-
tions per week and a booster injection were performed two days before the harvest of the
spleen cells. The hybridomas were produced via the fusion of splenocytes and P3U1 cells
by using polyethylene glycol 1500 (PEG1500; Roche Diagnostics, Indianapolis, IN, USA).
The supernatants, which were positive for CHO/CD44v3–10 cells and negative for CHO-K1
cells, were selected by using the SA3800 Cell Analyzers (Sony Corp., Tokyo, Japan).

4.4. ELISA

We obtained fifty-eight peptides, which cover the extracellular domain of CD44v3–10 [31],
from Sigma-Aldrich Corp. (St. Louis, MO, USA). We immobilized them on Nunc Maxisorp
96-well immunoplates (Thermo Fisher Scientific, Inc.) at 1 µg/mL for 30 min at 37 ◦C. Im-
munoplate washing was performed by using HydroSpeed Microplate Washer (Tecan, Zürich,
Switzerland) with phosphate-buffered saline (PBS) containing 0.05% (v/v) Tween 20 (PBST;
Nacalai Tesque, Inc.). After the blocking with 1% (w/v) bovine serum albumin (BSA) in PBST
for 30 min at 37 ◦C, C44Mab-6 (10 µg/mL) was added to each well. Then, the wells were further
incubated with anti-mouse immunoglobulins–peroxidase conjugate (1:2000 diluted; Agilent
Technologies Inc., Santa Clara, CA, USA) for 30 min at 37 ◦C. One-Step Ultra TMB (Thermo
Fisher Scientific Inc.) was used for enzymatic reactions. An iMark microplate reader (Bio-Rad
Laboratories, Inc., Berkeley, CA, USA) was used to measure the optical density at 655 nm.

4.5. Flow Cytometry

CHO-K1, CHO/CD44s, CHO/CD44v3–10, COLO205, and HSC-3 cells were obtained by
using 0.25% trypsin and 1 mM ethylenediamine tetraacetic acid (EDTA; Nacalai Tesque, Inc.).
The cells were treated with C44Mab-6, C44Mab-46, or blocking buffer (control) (0.1% BSA in
PBS) for 30 min at 4 ◦C. Then, the cells (1 × 105 cells/sample) were treated with anti-mouse
IgG conjugated with Alexa Fluor 488 (1:2000; Cell Signaling Technology, Inc., Danvers, MA,
USA) for 30 min at 4 ◦C. The data were analyzed by using the SA3800 Cell Analyzer and
SA3800 software ver. 2.05 (Sony Corp.).

4.6. Determination of Dissociation Constant (KD) via Flow Cytometry

In CHO/CD44v3–10 cells, we prepared from 130 to 0.008 nM (diluted by 1/2) of
C44Mab-6. In COLO201 and HSC-3 cells, we prepared from 1300 to 0.08 nM (diluted by
1/2) of C44Mab-6. The serially diluted C44Mab-6 was suspended with 2 × 105 cells. Then,
the cells were incubated with anti-mouse IgG conjugated with Alexa Fluor 488 (1:200). BD
FACSLyric and BD FACSuite software version 1.3 (BD Biosciences, Franklin Lakes, NJ,
USA) were used for the fluorescence data analyses. The KD was determined by the fitting
binding isotherms to built-in one-site binding models of GraphPad Prism 8 (GraphPad
Software, Inc., La Jolla, CA, USA).

4.7. Western Blot Analysis

The 10 µg of cell lysates were subjected to SDS-polyacrylamide gel for electrophoresis
by using polyacrylamide gels (5–20%; FUJIFILM Wako Pure Chemical Corporation, Osaka,
Japan). The separated proteins were transferred onto polyvinylidene difluoride (PVDF)
membranes (Merck KGaA, Darmstadt, Germany). The blocking was performed by using 4%
skim milk (Nacalai Tesque, Inc.) in PBST. The membranes were incubated with 10 µg/mL of
C44Mab-6, 10 µg/mL of C44Mab-46, or 1 µg/mL of an anti-β-actin mAb (clone AC-15; Sigma-
Aldrich Corp.) and then incubated with peroxidase-conjugated anti-mouse immunoglobulins
(diluted 1:1000; Agilent Technologies, Inc.). Finally, the signals were enhanced by using a
chemiluminescence reagent, ImmunoStar LD (FUJIFILM Wako Pure Chemical Corporation),
and were detected by a Sayaca-Imager (DRC Co., Ltd., Tokyo, Japan).
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4.8. Immunohistochemical Analysis

FFPE sections of OSCC tissue array (OR601c) and colorectal carcinoma tissue array
(CO483a) were purchased from US Biomax Inc. (Rockville, MD, USA). The tissue arrays
were autoclaved in EnVision FLEX Target Retrieval Solution High pH (Agilent Technologies,
Inc.) for 20 min. After blocking with SuperBlock T20 (Thermo Fisher Scientific, Inc.), the
sections were incubated with C44Mab-6 (1 µg/mL) and C44Mab-46 (1 µg/mL) for 1 h at room
temperature. The sections were further incubated with the EnVision+ Kit for mouse (Agilent
Technologies Inc.) for 30 min. Then, a chromogenic reaction using 3,3′-diaminobenzidine
tetrahydrochloride (DAB; Agilent Technologies Inc.) was conducted. Hematoxylin (FUJIFILM
Wako Pure Chemical Corporation) was used for the counterstaining. To examine the sections
and obtain images, we used Leica DMD108 (Leica Microsystems GmbH, Wetzlar, Germany).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms24098411/s1. We listed the information of anti-CD44 mAbs in our original “Antibody Bank”
(http://www.med-tohoku-antibody.com/topics/001_paper_antibody_PDIS.htm#CD44 (accessed
on 5 May 2023)).
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