
 
 

 
 

 
Curr. Issues Mol. Biol. 2023, 3, Firstpage–Lastpage. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/cimb 

Article 1 

A Novel Anti-CD44 variant 9 Monoclonal Antibody C44Mab-1 2 

was developed for immunohistochemical analyses against colo- 3 

rectal cancers 4 

Mayuki Tawara 1,#, Hiroyuki Suzuki 1 *,#, Tomohiro Tanaka 1, Mika K. Kaneko 1, 2, and Yukinari Kato 1, 2 * 5 

1 Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo- 6 
machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; tawara.mayuki.p8@dc.tohoku.ac.jp (M.T.); 7 
tomohiro.tanaka.b5@tohoku.ac.jp (T.T.) 8 

2 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo- 9 
machi, Aoba-ku, Sendai 980-8575, Japan; k.mika@med.tohoku.ac.jp (M.K.K.) 10 

* Correspondence: hiroyuki.suzuki.b4@tohoku.ac.jp (H.S.); yukinari.kato.e6@tohoku.ac.jp (Y.K.);  11 
Tel.: +81-22-717-8207 (H.S. and Y.K.) 12 

#contributed equally to this work 13 

Abstract: Cluster of differentiation 44 (CD44) is a type I transmembrane glycoprotein, and has been 14 
shown as a cell surface marker of cancer stem-like cells in various cancers. Especially, the splicing 15 
variants of CD44 (CD44v) are overexpressed in cancers, and play critical roles in cancer stemness, 16 
invasiveness, and resistance to chemotherapy and radiotherapy. Therefore, the understanding of 17 
the function of each CD44v is indispensable for the CD44-targeting therapy. CD44v9 contains the 18 
variant 9-encoded region, and its expression predicts poor prognosis in patients with various can- 19 
cers. CD44v9 plays critical roles in the malignant progression of tumors. Therefore, CD44v9 is a 20 
promising target for cancer diagnosis and therapy. Here, we developed sensitive and specific mon- 21 
oclonal antibodies (mAbs) against CD44 by immunizing mice with CD44v3–10-overexpressed Chi- 22 
nese hamster ovary CHO-K1 (CHO/CD44v3–10) cells. We first determined their critical epitopes 23 
using enzyme-linked immunosorbent assay, and characterize their applications to flow cytometry, 24 
western blotting, and immunohistochemistry. One of the established clones, C44Mab-1 (IgG1, kappa) 25 
reacted with a peptide of the variant 9-encoded region, indicating that C44Mab-1 recognizes CD44v9. 26 
C44Mab-1 reacted with CHO/CD44v3–10 cells or colorectal cancer cell lines (COLO201 and 27 
COLO205) by flow cytometry. The apparent dissociation constant (KD) of C44Mab-1 for 28 
CHO/CD44v3–10, COLO201, and COLO205 was 2.5 × 10−8 M, 3.3 × 10−8 M, and 6.5 × 10−8 M, respec- 29 
tively. Furthermore, C44Mab-1 was able to detect the CD44v3–10 in western blotting, and endoge- 30 
nous CD44v9 in immunohistochemistry using colorectal cancer tissues. These results indicated that 31 
C44Mab-1 is useful for detecting CD44v9 not only in flow cytometry or western blotting but also in 32 
immunohistochemistry against colorectal cancers. 33 
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 35 

1. Introduction 36 
Cluster of Differentiation 44 (CD44) is a type I transmembrane glycoprotein, and its 37 

variety of isoforms are expressed in various type of cells. [1]. The alternative splicing of 38 
CD44 mRNA mediates the variety of isoforms [2]. The CD44 standard (CD44s) isoform, 39 
the smallest isoform of CD44, is expressed in most vertebrate cells. CD44s mRNA is as- 40 
sembled by the first five (1 to 5) and the last five (16 to 20) constant region exons [3]. The 41 
CD44 variant (CD44v) isoforms are assembled by the alternative splicing of middle vari- 42 
ant exons (v1–v10) in various combinations with the standard exons of CD44s [4]. Both 43 
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CD44s and CD44v (pan-CD44) bind to hyaluronic acid (HA), which plays critical roles in 44 
cellular adhesion, migration, homing, and proliferation [5]. 45 

The CD44 protein is further modified by variety of glycosylation, including N-gly- 46 
cans, O-glycans, and glycosaminoglycans （heparan sulphate, etc.） [6]. Due to the post- 47 
translational modifications, the molecular weight of CD44s is enlarged to 80–100 kDa, and 48 
some CD44v isoforms surpass 200 kDa due to a high level of glycosylation [7]. 49 

Several isoforms of the CD44 are associated with malignant progression in various 50 
tumors [8], including head and neck squamous cell carcinomas (SCCs) [9], pancreatic can- 51 
cers [10,11], breast cancers [12], gliomas [13,14], prostate cancers [15], and colorectal can- 52 
cers (CRC) [16]. CD44 is also known as a cell surface marker of cancer stem-like cells 53 
(CSCs) in various carcinomas [17]. Specific monoclonal antibodies (mAbs) to CD44s or 54 
CD44v are utilized for sorting CD44high CSCs [17]. The CD44high population exhibited the 55 
increased stemness property, drug resistance, and tumor formation in vivo [17]. Therefore, 56 
development of anti-CD44 mAbs, which recognize each variant, is important for the fur- 57 
ther characterization of CSCs in various cancers. 58 

The functions of CD44v have been reported in the promotion of tumor invasion, me- 59 
tastasis, CSC properties [18], and resistance to chemotherapy and radiotherapy [8,19]. The 60 
v3-encoded region is modified by heparan sulfate, which promotes the binding to heparin- 61 
binding growth factors including fibroblast growth factors and heparin-binding epidermal 62 
growth factor-like growth factor. Therefore, the v3-encoded region functions as a co-re- 63 
ceptor of receptor tyrosine kinases and potentiate their signal transduction [20]. Further- 64 
more, the v6-encoded region is essential for the activation of c-MET through ternary com- 65 
plex formation with the ligand hepatocyte growth factor [21]. The v8–10-encoded region 66 
could bind to and stabilize a cystine–glutamate transporter (xCT), which promotes the 67 
defense to reactive oxygen species (ROS) via cystine uptake-mediated glutathione synthe- 68 
sis [22]. The regulation of redox status depends on the expression of CD44v8–10 that is 69 
associated with the xCT function and links to the poor prognosis of patients [23]. There- 70 
fore, the establishment and characterization of mAbs, which recognize each CD44v, are 71 
essential for understanding each variant function and development of CD44-targeting 72 
cancer therapy. However, the function and distribution of the variant 9-encoded region in 73 
tumors have not been fully understood. 74 

We previously developed an anti-pan-CD44 mAb, C44Mab-5 (IgG1, kappa) [24] using 75 
the Cell-Based Immunization and Screening (CBIS) method. Furthermore, another anti- 76 
pan-CD44 mAb, C44Mab-46 (IgG1, kappa) [25] was established by immunizing mice with 77 
CD44v3–10 ectodomain. We showed that both C44Mab-5 and C44Mab-46 could be applied 78 
to flow cytometry and immunohistochemistry in oral [24] and esophageal SCCs [25]. We 79 
also determined the epitopes of C44Mab-5 and C44Mab-46 within the standard exons (1 to 80 
5)-encoding regions [26-28]. Furthermore, we produced a defucosylated version (5-mG2a- 81 
f) using FUT8-deficient ExpiCHO-S cells (BINDS-09) and investigated the antitumor ef- 82 
fects of 5-mG2a-f in mouse xenograft models of oral SCC [29]. Recently, we have been es- 83 
tablished various CD44v mAbs, including C44Mab-108 (v4) [30] and C44Mab-9 (v6) [31]. 84 

In this study, we established a novel anti-CD44v9 mAb, C44Mab-1 (IgG1, kappa) by 85 
CBIS method, and evaluated its applications, including flow cytometry, western blotting, 86 
and immunohistochemical analyses of oral squamous cell carcinoma and colorectal ade- 87 
nocarcinomas. 88 

2. Materials and Methods 89 
2.1. Cell Lines 90 

COLO201 (a human colorectal cancer cell line), P3X63Ag8U.1 (P3U1; a mouse multi- 91 
ple myeloma), and Chinese hamster ovary (CHO)-K1 cell lines were obtained from the 92 
American Type Culture Collection (ATCC, Manassas, VA, USA). COLO205 (a human col- 93 
orectal cancer cell line) was obtained from the Cell Resource Center for Biomedical Re- 94 
search Institute of Development, Aging, and Cancer at Tohoku University (Miyagi, Japan). 95 
To cultivate these cell lines, we used Roswell Park Memorial Institute (RPMI)-1640 96 
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medium (Nacalai Tesque, Inc., Kyoto, Japan), which is supplemented with 10% heat-in- 97 
activated fetal bovine serum (FBS; Thermo Fisher Scientific, Inc., Waltham, MA, USA). We 98 
further added the antibiotics, including 100 µg/mL streptomycin, 100 U/mL penicillin, and 99 
0.25 µg/mL amphotericin B (Nacalai Tesque, Inc.). All cell lines were grown in a humidi- 100 
fied incubator at 37°C with 5% CO2. 101 

We amplified CD44s cDNA from LN229 cDNA using HotStar HiFidelity Polymerase 102 
Kit (Qiagen Inc., Hilden, Germany). We obtained CD44v3–10 ORF from the RIKEN BRC. 103 
CD44v3–10 and CD44s cDNAs were cloned into a pCAG-Ble-ssPA16 vector, which pos- 104 
sesses the signal sequence and the N-terminal PA16 tag (GLEGGVAMPGAEDDVV) 105 
[24,32-35], which can be detected by an anti-human podoplanin mAb (NZ-1) [36-51]. Us- 106 
ing a Neon transfection system (Thermo Fisher Scientific, Inc.), two stable transfectants, 107 
such as CHO/CD44v3–10 and CHO/CD44s, were established by introducing pCAG- 108 
Ble/PA16-CD44v3–10 and pCAG-Ble/PA16-CD44s into CHO-K1 cells, respectively. 109 

2.2. Production of hybridoma cells 110 
The 6-week-old female BALB/c mice were purchased from CLEA Japan (Tokyo, Ja- 111 

pan). Mice were housed under specific pathogen-free conditions. To minimize animal suf- 112 
fering and distress in the laboratory, all mice experiments were performed according to 113 
relevant guidelines and regulations. Our animal experiments were approved by the Ani- 114 
mal Care and Use Committee of Tohoku University (Permit number: 2019NiA-001). Mice 115 
were monitored every day for health during the period of experiments.  Mice were in- 116 
traperitoneally immunized with CHO/CD44v3–10 (1 × 108 cells) with Imject Alum 117 
(Thermo Fisher Scientific Inc.) as an adjuvant. We performed additional immunizations 118 
of CHO/CD44v3–10 (1 × 108 cells, three times), and performed a booster injection of 119 
CHO/CD44v3–10 (1 × 108 cells) 2 days before harvesting the spleen cells. We used poly- 120 
ethylene glycol 1500 (PEG1500; Roche Diagnostics, Indianapolis, IN, USA) to fuse the sple- 121 
nocytes and P3U1 cells. The hybridoma supernatants, which are negative for CHO-K1 122 
cells and positive for CHO/CD44v3–10 cells, were selected using SA3800 Cell Analyzer 123 
(Sony Corp. Tokyo, Japan). 124 

2.3. ELISA 125 
Fifty-eight peptides, which cover the extracellular domain of CD44v3–10 [26], were 126 

obtained from Sigma-Aldrich Corp. (St. Louis, MO, USA). We immobilized them on Nunc 127 
Maxisorp 96-well immunoplates (Thermo Fisher Scientific Inc) at 1 µg/mL for 30 min at 128 
37°C. The palate washing was performed using HydroSpeed Microplate Washer (Tecan, 129 
Zürich, Switzerland) with phosphate-buffered saline (PBS) containing 0.05% (v/v) Tween 130 
20 (PBST; Nacalai Tesque, Inc.). After the blocking with 1% (w/v) bovine serum albumin 131 
(BSA) in PBST for 30 min at 37°C, C44Mab-1 (10 µg/mL) was added to each well. Then, the 132 
wells were further incubated with anti-mouse immunoglobulins peroxidase-conjugate 133 
(1:2000 diluted; Agilent Technologies Inc., Santa Clara, CA, USA) for 30 min at 37°C. One- 134 
Step Ultra TMB (Thermo Fisher Scientific Inc.) was used for enzymatic reactions. An 135 
iMark microplate reader (Bio-Rad Laboratories, Inc., Berkeley, CA, USA) was used to 136 
mesure the optical density at 655 nm. 137 

2.4. Flow Cytometry 138 
CHO/CD44v3–10 and CHO-K1 cells were prepared using 0.25% trypsin and 1 mM 139 

ethylenediamine tetraacetic acid (EDTA; Nacalai Tesque, Inc.). COLO201 and COLO205 140 
were obtained by pipetting. The cells were incubated with C44Mab-1, C44Mab-46, or block- 141 
ing buffer (0.1% BSA in PBS; control) for 30 min at 4°C. Then, the cells were treated with 142 
anti-mouse IgG conjugated with Alexa Fluor 488 (1:2000; Cell Signaling Technology, Inc.) 143 
for 30 min at 4°C. Fluorescence data were collected and analyzed using the SA3800 Cell 144 
Analyzer and SA3800 software (ver. 2.05, Sony Corp.), respectively. 145 
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2.5. Determination of Apparent Dissociation Constant (KD) by Flow Cytometry 146 
Serially diluted C44Mab-1 was suspended with CHO/CD44v3–10, COLO201, and 147 

COLO205 cells. Then, those cells were treated with anti-mouse IgG conjugated with Alexa 148 
Fluor 488 (1:200). Fluorescence data were collected and analyzed as indicated above. 149 
GraphPad Prism 8 (the fitting binding isotherms to built-in one-site binding models; 150 
GraphPad Software, Inc., La Jolla, CA, USA) was used to determine the apparent dissoci- 151 
ation constant (KD). 152 

2.6. Western Blot Analysis 153 
The 10 µg of cell lysates were subjected to SDS-polyacrylamide gel for electrophoresis 154 

using polyacrylamide gels (5–20%; FUJIFILM Wako Pure Chemical Corporation, Osaka, 155 
Japan) and electrotransferred onto polyvinylidene difluoride (PVDF) membranes (Merck 156 
KGaA, Darmstadt, Germany). The blocking was performed using 4% skim milk (Nacalai 157 
Tesque, Inc.) in PBST. The membranes were incubated with 10 µg/mL of C44Mab-1, 10 158 
µg/mL of C44Mab-46, or 1 µg/mL of an anti-isocitrate dehydrogenase 1 (IDH1; RcMab-1; 159 
rat IgG2a) [52,53], and then incubated with peroxidase-conjugated anti-mouse immuno- 160 
globulins (diluted 1:1000; Agilent Technologies, Inc.) or peroxidase-conjugated anti-rat 161 
immunoglobulins (diluted 1:10000; Sigma-Aldrich Corp.). Finally, the signals were en- 162 
hanced using a chemiluminescence reagent, ImmunoStar LD (FUJIFILM Wako Pure 163 
Chemical Corporation), and were detected by a Sayaca-Imager (DRC Co. Ltd., Tokyo, Ja- 164 
pan). 165 

2.7. Immunohistochemical Analysis 166 
The formalin-fixed paraffin-embedded (FFPE) oral SCC tissues were obtained as de- 167 

scribed previously [54]. We purchased a colorectal carcinoma tissue array (CO483a) from 168 
US Biomax Inc. (Rockville, MD, USA). The sections were autoclaved in EnVision FLEX 169 
Target Retrieval Solution High pH (Agilent Technologies, Inc.) for 20 min. After blocking 170 
with SuperBlock T20 (Thermo Fisher Scientific, Inc.), we incubated the tissue sections 171 
with C44Mab-1 (1 µg/mL) and C44Mab-46 (1 µg/mL) for 1 h, and treated with the EnVi- 172 
sion+ Kit for mouse (Agilent Technologies Inc.) for 30 min at room temperature. The chro- 173 
mogenic reaction was conducted using 3,3′-diaminobenzidine tetrahydrochloride (DAB; 174 
Agilent Technologies Inc.). The counterstaining were performed using hematoxylin (FU- 175 
JIFILM Wako Pure Chemical Corporation). To examine the sections and obtain images, 176 
we used Leica DMD108 (Leica Microsystems GmbH, Wetzlar, Germany). 177 

3. Results 178 
2.1. Establishment of an Anti-CD44v9 mAb, C44Mab-1 179 

In the CBIS method, we prepared the CD44v3–10-overexpressed CHO-K1 cells 180 
(CHO/CD44v3–10) as an immunogen. As shown in Figure 1, mice were immunized with 181 
CHO/CD44v3–10 cells, and hybridomas were produced and seeded into 96-well plates. 182 
Then, the supernatants, which were positive to CHO/CD44v3–10 cells and negative to 183 
CHO-K1, were selected by high throughput screening using flow cytometry. After cloning 184 
by the limiting dilution, anti-CD44 mAb-producing clones were finally established. We 185 
next performed the ELISA to determine the epitope of each mAb. Among them, C44Mab- 186 
1 (IgG1, kappa) was shown to recognize the CD44p471–490 peptide 187 
(STSHEGLEEDKDHPTTSTLT), which is corresponding to variant 9-encoded sequence 188 
(Table 1). In contrast, C44Mab-1 never recognized other CD44v3–10 extracellular regions. 189 
These results indicated that C44Mab-1 specifically recognizes the CD44 variant 9-encoded 190 
sequence. 191 
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 192 
Figure 1. A schematic representation of ant-human CD44 mAbs production. (A) Structure of CD44. 193 
The CD44s mRNA is assembled by the first five (1 to 5) and the last five (16 to 20) exons, and trans- 194 
lates CD44s. The mRNAs of CD44 variant are produced by the alternative splicing of middle variant 195 
exons, and translate multiple CD44v such as CD44v3–10, CD44v4–10, CD44v6–10, and CD44v8–10. 196 
(B) CHO/CD44v3–10 cells were intraperitoneally injected into BALB/c mice. (C) Hybridomas were 197 
produced by fusion of the splenocytes and P3U1 cells (D) The screening was performed by flow 198 
cytometry using CHO/CD44v3–10 and parental CHO-K1 cells. (E) After cloning and additional 199 
screening, a clone C44Mab-1 (IgG1, kappa) was established. Furthermore, we used peptides which 200 
cover the extracellular domain of CD44v3–10 (Table 1), and determined the binding epitopes of each 201 
mAbs by enzyme-linked immunosorbent assay (ELISA). 202 
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Table 1. The determination of the binding epitope of C44Mab-1 by ELISA. 203 
Peptide Coding Exon * Sequence C44Mab-1 

CD44p21–40 2 QIDLNITCRFAGVFHVEKNG − 
CD44p31–50 2 AGVFHVEKNGRYSISRTEAA − 
CD44p41–60 2 RYSISRTEAADLCKAFNSTL − 
CD44p51–70 2 DLCKAFNSTLPTMAQMEKAL − 
CD44p61–80 2/3 PTMAQMEKALSIGFETCRYG − 
CD44p71–90 2/3 SIGFETCRYGFIEGHVVIPR − 

CD44p81–100 3 FIEGHVVIPRIHPNSICAAN − 
CD44p91–110 3 IHPNSICAANNTGVYILTSN − 

CD44p101–120 3 NTGVYILTSNTSQYDTYCFN − 
CD44p111–130 3/4 TSQYDTYCFNASAPPEEDCT − 
CD44p121–140 3/4 ASAPPEEDCTSVTDLPNAFD − 
CD44p131–150 4/5 SVTDLPNAFDGPITITIVNR − 
CD44p141–160 4/5 GPITITIVNRDGTRYVQKGE − 
CD44p151–170 5 DGTRYVQKGEYRTNPEDIYP − 
CD44p161–180 5 YRTNPEDIYPSNPTDDDVSS − 
CD44p171–190 5 SNPTDDDVSSGSSSERSSTS − 
CD44p181–200 5 GSSSERSSTSGGYIFYTFST − 
CD44p191–210 5 GGYIFYTFSTVHPIPDEDSP − 
CD44p201–220 5 VHPIPDEDSPWITDSTDRIP − 
CD44p211–230 5/v3 WITDSTDRIPATSTSSNTIS − 
CD44p221–240 5/v3 ATSTSSNTISAGWEPNEENE − 
CD44p231–250 v3 AGWEPNEENEDERDRHLSFS − 
CD44p241–260 v3 DERDRHLSFSGSGIDDDEDF − 
CD44p251–270 v3/v4 GSGIDDDEDFISSTISTTPR − 
CD44p261–280 v3/v4 ISSTISTTPRAFDHTKQNQD − 
CD44p271–290 v4 AFDHTKQNQDWTQWNPSHSN − 
CD44p281–300 v4 WTQWNPSHSNPEVLLQTTTR − 
CD44p291–310 v4/v5 PEVLLQTTTRMTDVDRNGTT − 
CD44p301–320 v4/v5 MTDVDRNGTTAYEGNWNPEA − 
CD44p311–330 v5 AYEGNWNPEAHPPLIHHEHH − 
CD44p321–340 v5 HPPLIHHEHHEEEETPHSTS − 
CD44p331–350 v5/v6 EEEETPHSTSTIQATPSSTT − 
CD44p341–360 v5/v6 TIQATPSSTTEETATQKEQW − 
CD44p351–370 v6 EETATQKEQWFGNRWHEGYR − 
CD44p361–380 v6 FGNRWHEGYRQTPREDSHST − 
CD44p371–390 v6/v7 QTPREDSHSTTGTAAASAHT − 
CD44p381–400 v6/v7 TGTAAASAHTSHPMQGRTTP − 
CD44p391–410 v7 SHPMQGRTTPSPEDSSWTDF − 
CD44p401–420 v7 SPEDSSWTDFFNPISHPMGR − 
CD44p411–430 v7/v8 FNPISHPMGRGHQAGRRMDM − 
CD44p421–440 v7/v8 GHQAGRRMDMDSSHSTTLQP − 
CD44p431–450 v8 DSSHSTTLQPTANPNTGLVE − 
CD44p441–460 v8 TANPNTGLVEDLDRTGPLSM − 
CD44p451–470 v8/v9 DLDRTGPLSMTTQQSNSQSF − 
CD44p461–480 v8/v9 TTQQSNSQSFSTSHEGLEED − 
CD44p471–490 v9 STSHEGLEEDKDHPTTSTLT + 
CD44p481–500 v9/v10 KDHPTTSTLTSSNRNDVTGG − 
CD44p491–510 v9/v10 SSNRNDVTGGRRDPNHSEGS − 
CD44p501–520 v10 RRDPNHSEGSTTLLEGYTSH − 
CD44p511–530 v10 TTLLEGYTSHYPHTKESRTF − 
CD44p521–540 v10 YPHTKESRTFIPVTSAKTGS − 
CD44p531–550 v10 IPVTSAKTGSFGVTAVTVGD − 
CD44p541–560 v10 FGVTAVTVGDSNSNVNRSLS − 
CD44p551–570 v10/16 SNSNVNRSLSGDQDTFHPSG − 
CD44p561–580 v10/16 GDQDTFHPSGGSHTTHGSES − 
CD44p571–590 16/17 GSHTTHGSESDGHSHGSQEG − 
CD44p581–600 16/17 DGHSHGSQEGGANTTSGPIR − 
CD44p591–606 17 GANTTSGPIRTPQIPEAAAA − 

+, OD655 ≧	0.3; −, OD655 < 0.1. * The CD44 exon-encoded regions are illustrated in Figure 1. 204 
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2.2. Flow Cytometric Analysis of C44Mab-1 to CD44-Expressing Cells 205 
We next investigated the reactivity of C44Mab-1 against CHO/CD44v3–10 and 206 

CHO/CD44s cells by flow cytometry. C44Mab-1 recognized CHO/CD44v3–10 cells in a 207 
dose-dependent manner (Figure 2A). In contrast, C44Mab-1 never recognized CHO/CD44s 208 
(Figure 2B) nor CHO-K1 (Figure 2C) cells. We confirmed that a pan-CD44 mAb, C44Mab- 209 
46 [25], recognized the CHO/CD44s cells (Supplemental Figure S1). Furthermore, C44Mab- 210 
1 could recognize endogenous CD44v9 in both COLO201 (Figure 2D) and COLO205 (Fig- 211 
ure 2E) cells in a dose-dependent manner. 212 

 213 
Figure 2. Flow cytometry using C44Mab-1. CHO/CD44v3–10 (A), CHO/CD44s (B), CHO-K1 (C), 214 
COLO201 (D), and COLO205 (E) were treated with 0.01–10 µg/mL of C44Mab-1, followed by 215 
treatment with Alexa Fluor 488-conjugated anti-mouse IgG (Red line). The black line represents the 216 
negative control (blocking buffer). 217 
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We next performed the flow cytometry-based measurement of the apparent binding 218 
affinity of C44Mab-1 to CHO/CD44v3–10, COLO201, and COLO205 cells. As shown in Fig- 219 
ure 3, the dissociation constant (KD) of C44Mab-1 for CHO/CD44v3–10, COLO201, and 220 
COLO205 was 2.5 × 10−8 M, 3.3 × 10−8 M, and 6.5 × 10−8 M, respectively. Results indicated that 221 
C44Mab-1 possesses the moderate binding affinity for CD44v3–10 or endogenous CD44v9- 222 
expressing cells. 223 

 224 
Figure 3. The determination of the the binding affinity of C44Mab-1. Serially diluted C44Mab-1 at 225 
indicated concentrations were treated with CHO/CD44v3–10 (A), COLO201 (B), and COLO205 (C). 226 
Then, cells were treated with anti-mouse IgG conjugated with Alexa Fluor 488. Fluorescence data 227 
were collected, followed by the calculation of the apparent dissociation constant (KD) by GraphPad 228 
PRISM 8. 229 

2.3. Western Blot Analysis 230 
We next performed western blot analysis to assess the sensitivity of C44Mab-1. Total 231 

cell lysates of CHO-K1, CHO/CD44s, and CHO/CD44v3–10 were analyzed. As shown in 232 
Figure 4, C44Mab-1 detected CD44v3–10 as more than 180-kDa and ~75 kDa bands mainly. 233 
However, C44Mab-1 never detect any bands from lysates of CHO/CD44s and CHO-K1 234 
cells (Figure 4A). An anti-pan-CD44 mAb, C44Mab-46, recognized CD44s (~75 kDa) and 235 
CD44v3–10 (>180 kDa) bands in the lysates of CHO/CD44s and CHO/CD44v3–10, respec- 236 
tively (Figure 4B). These results indicated that C44Mab-1 is able to detect exogenous 237 
CD44v3–10. 238 
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 239 
Figure 4. Western blot analysis by C44Mab-1. The total cell lysates (10 µg of protein) were separated 240 
and transferred onto polyvinylidene difluoride (PVDF) membranes. The membranes were incu- 241 
bated with 10 µg/mL of C44Mab-1 (A), 10 µg/mL of C44Mab-46 (B), or 1 µg/mL of RcMab-1 (C), 242 
followed by incubation with peroxidase-conjugated anti-mouse (for C44Mab-1 and C44Mab-46) or 243 
anti-rat (for RcMab-1) immunoglobulins. The red arrows indicate the CD44v3–10 (>180 kDa). The 244 
black arrow indicates the CD44s (~75 kDa). The white arrow indicates lower molecular weight band 245 
recognized by C44Mab-1 in CHO/CD44v3–10 lysate (~75 kDa). 246 

2.4. Immunohistochemical Analysis using C44Mab-1 against Tumor Tissues 247 
We next examined whether C44Mab-1 could be used for immunohistochemical anal- 248 

yses using FFPE sections. We first examined the reactivity of C44Mab-1 and C44Mab-46 in 249 
an oral SCC tissue. As shown in Supplementary Figure S2, C44Mab-1 exhibited a clear 250 
membranous staining, and was able to clearly distinguish tumor cells from stromal tis- 251 
sues. In contrast, C44Mab-46 stained the both. 252 

We then investigated the reactivity of C44Mab-1 and C44Mab-46 in the CRC tissue 253 
array. C44Mab-1 showed the strong membranous and cytoplasmic staining throughout 254 
CRC cells (Figure 5A). C44Mab-46 similarly stained the CRC cells (Figure 5B). In some 255 
CRC tissues, both C44Mab-1 and C44Mab-46 stained the basolateral surface of CRC cells 256 
(Figure 5C and D). In contrast, both C44Mab-1 and C44Mab-46 never stained CRC cells in 257 
some CRC tissues (Figure 5E and F). In addition, stromal staining by C44Mab-46 was also 258 
observed in several tumor tissues (Figure 5F). In normal colon epithelium, epithelial cells 259 
were rarely stained byC44Mab-1 (Figure 5G). In contrast, C44Mab-46 mainly stained stro- 260 
mal tissues in normal colon epithelium (Figure 5H). 261 

We summarized the data of immunohistochemical analyses in Table 2; C44Mab-1 262 
stained 16 out of 40 cases (40 %) in CRC. These results indicated that C44Mab-1 is useful 263 
for immunohistochemical analysis of FFPE tumor sections. 264 
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 265 
Figure 5. Immunohistochemical analysis using C44Mab1 and C44Mab-46 against CRC tissues. Af- 266 
ter antigen retrieval, serial sections of CRC tissue arrays (CO483a) were incubated with 1 µg/mL of 267 
C44Mab-1 or C44Mab-46 followed by treatment with the Envision+ kit. The color was developed us- 268 
ing 3,3’-diaminobenzidine tetrahydrochloride (DAB), and the sections were counterstained with 269 
hematoxylin. Scale bar = 100 µm. (A–F) CRC; (G, H) normal colon epithelium. 270 
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 271 
Table 2. Immunohistochemical analysis using C44Mab-1 against colorectal carcinoma tissue array. 272 

No

. 

Age Sex Organ Pathology diagnosis Grade Stage Type C44Mab-

1 

C44Mab-46 

1 67 M Colon Adenocarcinoma 1 - Malignant + + 
2 48 M Colon Adenocarcinoma 1 IIA Malignant - - 

3 58 M Colon Adenocarcinoma 1--2 IIA Malignant + + 

4 75 M Colon Adenocarcinoma 1 IV Malignant - ++ 

5 86 M Colon Adenocarcinoma 2 II Malignant - + 

6 55 M Colon Adenocarcinoma 2 IIIC Malignant - - 

7 38 M Colon Adenocarcinoma 1 I Malignant - ++ 

8 52 M Colon Adenocarcinoma 1 IIIB Malignant + - 

9 46 M Colon Adenocarcinoma 2 IIIB Malignant ++ + 

10 61 M Colon Mucinous adenocarcinoma 2 IIIB Malignant + ++ 

11 55 M Colon Mucinous adenocarcinoma with necrosis 2 IIA Malignant - ++ 

12 55 M Colon Adenocarcinoma 1 IIIB Malignant + - 

13 44 M Colon Adenocarcinoma 1 - Malignant - - 

14 31 M Colon Adenocarcinoma 2 IIIB Malignant - + 

15 74 F Colon Adenocarcinoma 2 IIIB Malignant + + 

16 61 M Colon Adenocarcinoma 2 II Malignant ++ ++ 

17 45 M Colon Adenocarcinoma 2 III Malignant + + 

18 58 M Colon Adenocarcinoma 2 IIIB Malignant - ++ 

19 58 M Colon Adenocarcinoma 2 IIA Malignant +++ +++ 

20 69 M Colon Adenocarcinoma 3 - Malignant - - 

21 64 F Colon Adenocarcinoma 2 IIIC Malignant ++ ++ 

22 82 M Colon Adenocarcinoma 2 IIIB Malignant - - 

23 34 M Colon Adenocarcinoma 2 IIIB Malignant ++ ++ 

24 50 F Colon Adenocarcinoma 2 IIB Malignant - - 

25 34 F Colon Adenocarcinoma 1 IIB Malignant - + 

26 52 F Colon Adenocarcinoma 2 IIA Malignant - + 

27 53 F Colon Adenocarcinoma 2 IIIB Malignant - - 

28 58 F Colon Adenocarcinoma 2 I Malignant - + 

29 59 F Colon Adenocarcinoma 2 IIA Malignant ++ ++ 

30 67 M Colon Adenocarcinoma 2 IIIB Malignant - ++ 

31 31 M Colon Adenocarcinoma 2 IIIB Malignant +++ +++ 

32 54 F Colon Adenocarcinoma 2 IIB Malignant - + 

33 54 F Colon Adenocarcinoma 2 IIIB Malignant - - 

34 62 M Colon Adenocarcinoma 2 - Malignant - + 

35 67 F Colon Adenocarcinoma 2 - Malignant + - 

36 52 F Colon Adenocarcinoma 2 IIA Malignant - - 

37 52 F Colon Adenocarcinoma 3 IIIB Malignant - - 

38 75 M Colon Adenocarcinoma 2 - Malignant - - 

39 57 F Colon Adenocarcinoma 2 IIB Malignant + +++ 

40 38 M Colon Mucinous adenocarcinoma 3 I Malignant - - 

4. Discussion 273 
Using the CBIS method, we developed C44Mab-1 (Figure 1), and determined its 274 

epitope as variant 9 encoded region by ELISA (Table 1). Then, we showed the multiple 275 
applications of C44Mab-1 for flow cytometry (Figures 2 and 3), western blotting (Figure 4), 276 
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and immunohistochemistry using OSCC (Supplementary Figure S2) and CRC tissues 277 
(Figure 5 and Table 2). 278 

Ishimoto et al. [22] demonstrated that CD44v interacts with xCT, a glutamate-cystine 279 
transporter, and regulates the level of reduced glutathione (GSH) in gastric cancer cells. 280 
As a result, CD44v contributes to the reduction of intracellular ROS. The knockdown of 281 
CD44 reduced the cell surface expression of xCT and suppressed tumor growth in a mouse 282 
gastric cancer model. Furthermore, they showed that the v8–10 region of CD44v is re- 283 
quired for the specific interaction between CD44v and xCT, and CD44v8–10 (S301A), an 284 
N-linked glycosylation site mutant, failed to interact with xCT. These results showed an 285 
important function for CD44v in the regulation of ROS defense and tumor growth. 286 

Ishimoto et al. [22] also established a rat mAb (clone RV3) against CD44v8–10 by im- 287 
munizing CD44v8–10-expressed RH7777 cells. The epitope of the mAb was determined 288 
as a variant 9-encoded region using the recombinant CD44v9 protein by ELISA. RV3 was 289 
mainly used in immunohistochemistry and revealed a predictive marker for recurrence 290 
of gastric [55] and urothelial [56] cancers, predicting survival outcome in hepatocellular 291 
carcinomas [57], and an indicator for identifying a cisplatin-resistant population in urothe- 292 
lial cancers [58]. Therefore, CD44v9 is a critical biomarker to evaluate the malignancy and 293 
prognosis of tumors. Furthermore, sulfasalazine, an xCT inhibitor, was shown to suppress 294 
the survival of CD44v9-positive CSCs both in vitro [59-61] and in vivo [62]. A dose-escala- 295 
tion clinical study in patients with advanced gastric cancers revealed that sulfasalazine 296 
reduced the population of CD44v9-positive cells in tumors [63], suggesting that CD44v9 297 
is a biomarker for patient selection and efficacy of xCT inhibitors. 298 

As mentioned above, RV3 recognized the recombinant CD44v9 protein by ELISA. 299 
Therefore, RV3 is thought to recognize the peptide or glycopeptide structure of CD44v9. 300 
However, the detailed binding epitope of RV3 has not been determined. As shown in Ta- 301 
ble 1, C44Mab-1 recognized a synthetic peptide (CD44p471–490; 302 
STSHEGLEEDKDHPTTSTLT), which possesses multiple predicted and confirmed O-gly- 303 
can sites [64]. As shown in Figure 4A, C44Mab-1 recognized a ~75kDa band in 304 
CHO/CD44v3–10 lysate,which is approximately identical to predicted molecular weight 305 
of CD44v3–10 from the amino acid length. Therefore, C44Mab-1 could recognize CD44v3– 306 
10 regardless of the glycosylation. The detailed epitope mapping and the influence of the 307 
glycosylation on C44Mab-1 recognition should be investigated in the future study. 308 

By large-scale genomic analyses, CRCs are classified into 4 subtypes, including mi- 309 
crosatellite instability immune, canonical, metabolic, and mesenchymal types [65]. Since 310 
the CD44v9 was upregulated in 40% of CRC tissues (Figure 5 and Table 2), the relationship 311 
to the subtypes should be determined. Additionally, the mechanism of CD44v9 upregu- 312 
lation including the transcription and the v9 inclusion by alternative splicing should be 313 
investigated. Wielenga et al. [66] demonstrated that CD44 is a target gene of Wnt/β- 314 
catenin in mice intestinal tumor model, suggesting that β-catenin signaling pathway could 315 
upregulate CD44 transcription. However, the mechanism of the variant 9 inclusion during 316 
the CRC development remains to be determined. 317 

In immunohistochemical analysis, we observed CD44v9 expression throughout CRC 318 
cells (Figure 5A) and on the basolateral surface of CRC cells (Figure 5C). The basolateral 319 
expression of CD44 was previously observed, and shown to be co-localized with HA [67], 320 
EpCAM-Claudin-7 complex [68], and Annexin II [69]. Therefore, the basolateral expres- 321 
sion of CD44 may function to promote HA/adhesion-mediated signal transduction and 322 
contribute CRC tumorigenesis. 323 

Clinical trials of anti-pan CD44 and CD44v6 mAbs have been conducted [70]. RG7356, 324 
an anti-pan CD44 mAb, exhibited an acceptable safety profile. However, the trial was ter- 325 
minated because of no clinical and dose-response relationship with RG7356 [71]. Clinical 326 
trials of an antibody-drug conjugate (ADC), an anti-CD44v6 mAb bi- 327 
vatuzumab−mertansine, were conducted. However, it failed due to the high toxicity to 328 
skin [72,73]. The anti-CD44v6 mAb is further developed to chimeric antigen receptor T 329 
(CAR-T) cell therapy. The CD44v6 CAR-T showed antitumor effects against primary 330 
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human multiple myeloma and acute myeloid leukemia [74]. Furthermore, the CD44v6 331 
CAR-T also suppressed the xenograft tumor growth of lung and ovarian carcinomas [75], 332 
which is expected for the application against solid tumors. Although CD44v9 is rarely 333 
detected in normal colon epithelium by C44Mab-1, CD44v9 could be detected in other nor- 334 
mal tissues including oral squamous epithelium (Supplementary Figure S2). For the de- 335 
velopment of therapeutic use of C44Mab-1, further investigations are required to reduce 336 
the toxicity to above tissues. 337 

Because anti-CD44 mAbs could have side effects by affecting normal tissues, the clin- 338 
ical applications of anti-CD44 mAbs are still limited We previously developed PDPN-tar- 339 
geting cancer-specific mAbs (CasMabs) [76-79] and podocalyxin-targeting CasMabs [80], 340 
which are currently applied to CAR-T therapy in mice models [46,81,82]. These CasMabs 341 
recognize cancer specific aberrant glycosylation of the target proteins [83]. It is worthwhile 342 
to establish cancer-specific anti-CD44 mAbs using the CasMab method. Anti-CD44 343 
CasMab production can be applicable as a basis for designing and optimizing potent im- 344 
munotherapy modalities, including ADCs and CAR-T therapies. 345 
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