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Abstract: Pancreatic cancer exhibits a poor prognosis due to the lack of early diagnostic biomarkers
and the resistance to conventional chemotherapy. CD44 has been known as a cancer stem cell marker
and plays tumor promotion and drug resistance roles in various cancers. In particular, the splicing
variants are overexpressed in many carcinomas and play essential roles in the cancer stemness,
invasiveness or metastasis, and resistance to treatments. Therefore, the understanding of each CD44
variant’s (CD44v) function and distribution in carcinomas is essential for the establishment of CD44-
targeting tumor therapy. In this study, we immunized mice with CD44v3–10-overexpressed Chinese
hamster ovary (CHO)-K1 cells and established various anti-CD44 monoclonal antibodies (mAbs).
One of the established clones (C44Mab-3; IgG1, kappa) recognized peptides of the variant-5-encoded
region, indicating that C44Mab-3 is a specific mAb for CD44v5. Moreover, C44Mab-3 reacted with
CHO/CD44v3–10 cells or pancreatic cancer cell lines (PK-1 and PK-8) by flow cytometry. The
apparent KD of C44Mab-3 for CHO/CD44v3–10 and PK-1 was 1.3 × 10−9 M and 2.6 × 10−9 M,
respectively. C44Mab-3 could detect the exogenous CD44v3–10 and endogenous CD44v5 in Western
blotting and stained the formalin-fixed paraffin-embedded pancreatic cancer cells but not normal
pancreatic epithelial cells in immunohistochemistry. These results indicate that C44Mab-3 is useful for
detecting CD44v5 in various applications and is expected to be useful for the application of pancreatic
cancer diagnosis and therapy.

Keywords: CD44; CD44 variant 5; monoclonal antibody; flow cytometry; immunohistochemistry

1. Introduction

Pancreatic cancer has become the third leading cause of death in men and women
combined in the United States in 2023 [1]. The development of pancreatic cancer has
been explained by four common oncogenic events, including KRAS, CDKN2A, SMAD4,
and TP53 [2,3]. However, pancreatic cancer shows a heterogeneity in drug response and
clinical outcomes [4]. Therefore, detailed understanding of pancreatic cancers has been
required to improve patient selection for current therapies and to develop novel therapeutic
strategies. An integrated genomic analysis of pancreatic ductal adenocarcinomas (PDAC)
was performed and defined four subtypes, including squamous, pancreatic progenitor,
immunogenic, and aberrantly differentiated endocrine exocrine (ADEX), which correspond
to the histopathological characteristics [5]. Additionally, various marker proteins have
been investigated for the early diagnostic and drug responses of pancreatic cancers [6].
Studies have suggested that CD44 plays important roles in malignant progression of tumors
through its cancer stemness and metastasis-promoting properties [7,8].

CD44 is a type I transmembrane glycoprotein that is expressed as a wide variety of
isoforms in various types of cells. [9]. The variety of isoforms is produced by the alternative
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splicing of CD44 mRNA. The CD44 standard isoform (CD44s) is the smallest isoform of
CD44 (85–95 kDa); it is presented on the membrane of most vertebrate cells. CD44s mRNA
is assembled by the first five and the last five constant region exons [10]. The CD44 variant
isoforms (CD44v) are produced by the alternative splicing of middle variant exons (v1–v10)
and the standard exons of CD44s [11]. CD44v is heavily glycosylated, leading to various
molecular weights (~250 kDa) owing to N-glycosylation and O-glycosylation [12]. Both
CD44s and CD44v (pan-CD44) are known as hyaluronic acid (HA) receptors that mediate
cellular homing, migration, adhesion, and proliferation [13].

CD44v is overexpressed in carcinomas and induce metastatic properties [14,15]. A
growing body of evidence suggests that CD44v plays critical roles in the promotion of
tumor invasion, metastasis, cancer-initiating properties [16], and resistance to chemo- and
radiotherapy [7,17]. Reports indicated the important functions of each variant’s exon-
encoded region. The v3-encoded region functions as a co-receptor for receptor tyrosine
kinases [18]. Since the v3-encoded region possesses heparan sulfate moieties, it can recruit
to heparin-binding epidermal growth factor-like growth factor (HB-EGF) and fibroblast
growth factors (FGFs). Furthermore, the v6-encoded region forms a ternary complex with
HGF and its receptor c-MET, which is essential for its activation [19]. Additionally, oxidative
stress resistance is mediated by the v8–10-encoded region through binding with a cystine–
glutamate transporter (xCT) subunit [20]. Therefore, establishment and characterization of
mAbs that recognize each CD44v is thought to be essential for understanding each variant’s
function and development of CD44-targeting tumor diagnosis and therapy. However,
the function and distribution of the variant-5-encoded region in tumors has not been
fully understood.

Our group established the novel anti-pan-CD44 mAbs, C44Mab-5 (IgG1, kappa) [21]
and C44Mab-46 (IgG1, kappa) [22] using the Cell-Based Immunization and Screening
(CBIS) method and immunization with the CD44v3–10 ectodomain, respectively. Both
C44Mab-5 and C44Mab-46 have epitopes within the standard exon (1 to 5)-encoding
sequences [23–25]. Furthermore, we showed that both C44Mab-5 and C44Mab-46 are
applicable to flow cytometry and immunohistochemistry in oral [21] and esophageal
squamous cell carcinomas (SCC) [22]. We have also investigated the antitumor effects
of core-fucose-deficient C44Mab-5 in mouse xenograft models of oral SCC [26]. In this
study, we developed a novel anti-CD44v5 mAb, C44Mab-3 (IgG1, kappa), by the CBIS
method and evaluated its applications, including flow cytometry, Western blotting, and
immunohistochemical analyses.

2. Materials and Methods
2.1. Cell Lines

Chinese hamster ovary (CHO)-K1 and mouse multiple myeloma P3X63Ag8U.1 (P3U1)
cell lines were obtained from the American Type Culture Collection (ATCC, Manassas, VA,
USA). The human pancreas cancer cell lines PK-1 and PK-8 were obtained from the Cell
Resource Center for Biomedical Research Institute of Development, Aging and Cancer at
Tohoku University. These cells were cultured in Roswell Park Memorial Institute (RPMI)-
1640 medium (Nacalai Tesque, Inc., Kyoto, Japan) supplemented with 100 U/mL penicillin,
100 µg/mL streptomycin, 0.25 µg/mL amphotericin B (Nacalai Tesque, Inc.), and 10%
heat-inactivated fetal bovine serum (FBS; Thermo Fisher Scientific, Inc., Waltham, MA,
USA). All the cells were grown in a humidified incubator at 37 ◦C with 5% CO2.

2.2. Plasmid Construction and Establishment of Stable Transfectants

CD44v3–10 open reading frame was obtained from the RIKEN BRC through the Na-
tional Bio-Resource Project of the MEXT, Japan. CD44s cDNA was amplified using the
HotStar HiFidelity Polymerase Kit (Qiagen Inc., Hilden, Germany) and LN229 (a glioblas-
toma cell line) cDNA as a template. CD44v3–10 and CD44 cDNAs were subcloned into
pCAG-Ble-ssPA16 vectors with a signal sequence and N-terminal PA16 tag of 16 amino
acids (GLEGGVAMPGAEDDVV) [21,27–30]; this can be detected by NZ-1, which was orig-
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inally developed as an anti-human podoplanin mAb [31–46]. The pCAG-Ble/PA16-CD44s
and pCAG-Ble/PA16-CD44v3–10 vectors were transfected into CHO-K1 cells using a Neon
transfection system (Thermo Fisher Scientific, Inc.), which offers an innovative electropo-
ration method that utilizes a proprietary biologically compatible pipette tip chamber to
generate a more uniform electric field for a significant increase in transfection efficiency
and cell viability. By the limiting dilution method, CHO/CD44s and CHO/CD44v3–10
clones were finally established.

2.3. Hybridomas

The female BALB/c mice were purchased from CLEA Japan (Tokyo, Japan). All
animal experiments were approved by the Animal Care and Use Committee of Tohoku
University (Permit number: 2019NiA-001) and performed according to relevant guidelines
and regulations to minimize animal suffering and distress in the laboratory. The mice
were intraperitoneally immunized with CHO/CD44v3–10 (1 × 108 cells) and Imject Alum
(Thermo Fisher Scientific Inc.) as an adjuvant. After the three additional immunizations
per week, a booster injection was performed two days before harvesting the spleen cells of
immunized mice. The hybridomas were established by the fusion of splenocytes and P3U1
cells using polyethylene glycol 1500 (PEG1500; Roche Diagnostics, Indianapolis, IN, USA).
RPMI-1640 supplemented with hypoxanthine, aminopterin, and thymidine (HAT; Thermo
Fisher Scientific Inc.) was used for the selection of hybridomas. The supernatants, which
are negative for CHO-K1 cells and positive for CHO/CD44v3–10 cells, were selected by
flow cytometry using SA3800 Cell Analyzers (Sony Corp. Tokyo, Japan).

2.4. Enzyme-Linked Immunosorbent Assay (ELISA)

Fifty-eight synthesized peptides, covering the CD44v3–10 extracellular domain [23],
were synthesized by Sigma-Aldrich Corp. (St. Louis, MO, USA). The peptides (1 µg/mL)
were immobilized on Nunc Maxisorp 96-well immunoplates (Thermo Fisher Scientific
Inc.). Plate washing was performed with phosphate-buffered saline (PBS) containing
0.05% (v/v) Tween 20 (PBST; Nacalai Tesque, Inc.). After blocking with 1% (w/v) bovine
serum albumin (BSA) in PBST, C44Mab-3 (10 µg/mL) was added to each well. Then, the
wells were further incubated with peroxidase-conjugated anti-mouse immunoglobulins
(1:2000 dilution; Agilent Technologies Inc., Santa Clara, CA, USA). One-Step Ultra TMB
(Thermo Fisher Scientific Inc.) was used for enzymatic reactions. An iMark microplate
reader (Bio-Rad Laboratories, Inc., Berkeley, CA, USA) was used to mesure the optical
density at 655 nm.

2.5. Flow Cytometry

CHO-K1, CHO/CD44v3–10, PK-1, and PK-8 were obtained using 0.25% trypsin and
1 mM ethylenediamine tetraacetic acid (EDTA; Nacalai Tesque, Inc.). The cells were
incubated with C44Mab-3, C44Mab-46, or blocking buffer (control) (0.1% BSA in PBS) for
30 min at 4 ◦C. Then, the cells were treated with Alexa Fluor 488-conjugated secondary
antibody (Cell Signaling Technology, Inc., Danvers, MA, USA) for 30 min at 4 ◦C. The data
were analyzed using the SA3800 Cell Analyzer and SA3800 software ver. 2.05 (Sony Corp.).

2.6. Determination of Dissociation Constant (KD) via Flow Cytometry

CHO/CD44v3–10 and PK-1 cells were treated with serially diluted C44Mab-3
(0.01–10 µg/mL). Then, the cells were incubated with Alexa Fluor 488-conjugated sec-
ondary antibody. Fluorescence data were analyzed using BD FACSLyric and BD FACSuite
software version 1.3 (BD Biosciences, Franklin Lakes, NJ, USA). The KD was determined
by the fitting binding isotherms to built-in one-site binding models of GraphPad Prism 8
(GraphPad Software, Inc., La Jolla, CA, USA).
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2.7. Determination of KD via Surface Plasmon Resonance (SPR)

Measurement of KD between C44Mab-3 and the epitope peptide was performed using
SPR. C44Mab-3 was immobilized on the sensor chip CM5 according to the manufacturer’s
protocol by Cytiva (Marlborough, MA, USA). C44Mab-3 (10 µg/mL in acetate buffer (pH 4.0;
Cytiva)) was immobilized using an amine coupling reaction. The surface of the flow cell 2
of the sensor chip CM5 was treated with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide
and N-hydroxysuccinimide (NHS), followed by the injection of C44Mab-3. The KD between
C44Mab-3 and the epitope peptide (CD44p311–330) was determined using Biacore X100
(Cytiva). A single cycle kinetics method was used to measure the binding signals. The data
were analyzed by 1:1 binding kinetics to determine the association rate constant (ka) and
dissociation rate constant (kd) and KD using Biacore X100 evaluation software (Cytiva).

2.8. Western Blot Analysis

The total cell lysates (10 µg of protein) were separated on 5–20% polyacrylamide gels
(FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan). The separated proteins were
transferred onto polyvinylidene difluoride (PVDF) membranes (Merck KGaA, Darmstadt,
Germany). The blocking was performed with 4% skim milk (Nacalai Tesque, Inc.) in PBST.
The membranes were incubated with 10 µg/mL of C44Mab-3, 10 µg/mL of C44Mab-46,
0.5 µg/mL of NZ-1, or 1 µg/mL of an anti-β-actin mAb (clone AC-15; Sigma-Aldrich Corp.)
and then incubated with peroxidase-conjugated anti-mouse immunoglobulins (diluted
1:1000; Agilent Technologies, Inc.) for C44Mab-3, C44Mab-46, and anti-β-actin. Anti-rat
immunoglobulins (diluted 1:1000; Agilent Technologies, Inc.) conjugated to peroxidase
was used for NZ-1. The chemiluminescence signals were obtained with ImmunoStar
LD (FUJIFILM Wako Pure Chemical Corporation) and detected using a Sayaca-Imager
(DRC Co., Ltd., Tokyo, Japan).

2.9. Immunohistochemical Analysis

One formalin-fixed paraffin-embedded (FFPE) oral SCC tissue was obtained from
Tokyo Medical and Dental University [47]. FFPE sections of pancreatic carcinoma tissue ar-
rays (Catalog number: PA241c and PA484) were purchased from US Biomax Inc. (Rockville,
MD, USA). Pancreas adenocarcinoma tissue microarray with adjacent normal pancreas
tissue (PA241c) contains 6 cases of pancreas adenocarcinoma with matched adjacent nor-
mal pancreas tissue, with quadruple cores per case. One oral SCC tissue was autoclaved
in citrate buffer (pH 6.0; Nichirei biosciences, Inc., Tokyo, Japan), and pancreatic carci-
noma tissue arrays were autoclaved in EnVision FLEX Target Retrieval Solution High pH
(Agilent Technologies, Inc.) for 20 min. After blocking with SuperBlock T20 (Thermo Fisher
Scientific, Inc.), the sections were incubated with C44Mab-3 (1 µg/mL) and C44Mab-46
(1 µg/mL) for 1 h at room temperature. Then, the sections were incubated with the EnVi-
sion+ Kit for mouse (Agilent Technologies Inc.) for 30 min. The color was developed using
3,3′-diaminobenzidine tetrahydrochloride (DAB; Agilent Technologies Inc.). Hematoxylin
(FUJIFILM Wako Pure Chemical Corporation) was used for the counterstaining. A Leica
DMD108 (Leica Microsystems GmbH, Wetzlar, Germany) was used to examine the sections
and obtain images.

3. Results
3.1. Development of an Anti-CD44v5 mAb, C44Mab-3

In the CBIS method, we used a stable transfectant (CHO/CD44v3–10 cells) as an
immunogen (Figure 1). Mice were immunized with CHO/CD44v3–10 cells, and hybrido-
mas were seeded into 96-well plates. The supernatants, which are negative for CHO-K1
cells and positive for CHO/CD44v3–10 cells, were selected using flow-cytometry-based
high throughput screening. By limiting dilution, anti-CD44-mAb-producing clones were
finally established. Among them, C44Mab-3 (IgG1, kappa) was shown to recognize both
CD44p311–330 (AYEGNWNPEAHPPLIHHEHH) and CD44p321–340 peptides (HPPLI-
HHEHHEEEETPHSTS), which correspond to the variant-5-encoded sequence (Table 1
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and Supplementary Figure S1). In contrast, C44Mab-3 did not recognize other CD44v3–10
extracellular regions. These results indicated that C44Mab-3 specifically recognizes the
CD44 variant-5-encoded sequence.
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Figure 1. A schematic illustration of anti-human CD44 mAbs production. (A) Structure of CD44.
CD44s mRNA is assembled by the first five (1 to 5) and the last five (16 to 20) exons and translates
CD44s. The mRNAs of CD44 variants are produced by the alternative splicing of middle variant
exons and translate multiple CD44v such as CD44v3–10, CD44v4–10, CD44v6–10, and CD44v8–10.
(B) CHO/CD44v3–10 cells were intraperitoneally injected into BALB/c mice. (C) The splenocytes
and P3U1 cells were fused and the hybridomas were produced. (D) The screening was conducted by
flow cytometry using parental CHO-K1 and CHO/CD44v3–10 cells. (E) After cloning and additional
screening, a clone (C44Mab-3 (IgG1, kappa)) was established. Furthermore, the binding epitope
was determined by enzyme-linked immunosorbent assay (ELISA) using peptides that cover the
extracellular domain of CD44v3–10.
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Table 1. Determination of the binding epitope of C44Mab-3 by ELISA.

Peptide Coding Exon * Sequence C44Mab-3

CD44p21–40 2 QIDLNITCRFAGVFHVEKNG −
CD44p31–50 2 AGVFHVEKNGRYSISRTEAA −
CD44p41–60 2 RYSISRTEAADLCKAFNSTL −
CD44p51–70 2 DLCKAFNSTLPTMAQMEKAL −
CD44p61–80 2/3 PTMAQMEKALSIGFETCRYG −
CD44p71–90 2/3 SIGFETCRYGFIEGHVVIPR −

CD44p81–100 3 FIEGHVVIPRIHPNSICAAN −
CD44p91–110 3 IHPNSICAANNTGVYILTSN −

CD44p101–120 3 NTGVYILTSNTSQYDTYCFN −
CD44p111–130 3/4 TSQYDTYCFNASAPPEEDCT −
CD44p121–140 3/4 ASAPPEEDCTSVTDLPNAFD −
CD44p131–150 4/5 SVTDLPNAFDGPITITIVNR −
CD44p141–160 4/5 GPITITIVNRDGTRYVQKGE −
CD44p151–170 5 DGTRYVQKGEYRTNPEDIYP −
CD44p161–180 5 YRTNPEDIYPSNPTDDDVSS −
CD44p171–190 5 SNPTDDDVSSGSSSERSSTS −
CD44p181–200 5 GSSSERSSTSGGYIFYTFST −
CD44p191–210 5 GGYIFYTFSTVHPIPDEDSP −
CD44p201–220 5 VHPIPDEDSPWITDSTDRIP −
CD44p211–230 5/v3 WITDSTDRIPATSTSSNTIS −
CD44p221–240 5/v3 ATSTSSNTISAGWEPNEENE −
CD44p231–250 v3 AGWEPNEENEDERDRHLSFS −
CD44p241–260 v3 DERDRHLSFSGSGIDDDEDF −
CD44p251–270 v3/v4 GSGIDDDEDFISSTISTTPR −
CD44p261–280 v3/v4 ISSTISTTPRAFDHTKQNQD −
CD44p271–290 v4 AFDHTKQNQDWTQWNPSHSN −
CD44p281–300 v4 WTQWNPSHSNPEVLLQTTTR −
CD44p291–310 v4/v5 PEVLLQTTTRMTDVDRNGTT −
CD44p301–320 v4/v5 MTDVDRNGTTAYEGNWNPEA −
CD44p311–330 v5 AYEGNWNPEAHPPLIHHEHH +
CD44p321–340 v5 HPPLIHHEHHEEEETPHSTS +
CD44p331–350 v5/v6 EEEETPHSTSTIQATPSSTT −
CD44p341–360 v5/v6 TIQATPSSTTEETATQKEQW −
CD44p351–370 v6 EETATQKEQWFGNRWHEGYR −
CD44p361–380 v6 FGNRWHEGYRQTPREDSHST −
CD44p371–390 v6/v7 QTPREDSHSTTGTAAASAHT −
CD44p381–400 v6/v7 TGTAAASAHTSHPMQGRTTP −
CD44p391–410 v7 SHPMQGRTTPSPEDSSWTDF −
CD44p401–420 v7 SPEDSSWTDFFNPISHPMGR −
CD44p411–430 v7/v8 FNPISHPMGRGHQAGRRMDM −
CD44p421–440 v7/v8 GHQAGRRMDMDSSHSTTLQP −
CD44p431–450 v8 DSSHSTTLQPTANPNTGLVE −
CD44p441–460 v8 TANPNTGLVEDLDRTGPLSM −
CD44p451–470 v8/v9 DLDRTGPLSMTTQQSNSQSF −
CD44p461–480 v8/v9 TTQQSNSQSFSTSHEGLEED −
CD44p471–490 v9 STSHEGLEEDKDHPTTSTLT −
CD44p481–500 v9/v10 KDHPTTSTLTSSNRNDVTGG −
CD44p491–510 v9/v10 SSNRNDVTGGRRDPNHSEGS −
CD44p501–520 v10 RRDPNHSEGSTTLLEGYTSH −
CD44p511–530 v10 TTLLEGYTSHYPHTKESRTF −
CD44p521–540 v10 YPHTKESRTFIPVTSAKTGS −
CD44p531–550 v10 IPVTSAKTGSFGVTAVTVGD −
CD44p541–560 v10 FGVTAVTVGDSNSNVNRSLS −
CD44p551–570 v10/16 SNSNVNRSLSGDQDTFHPSG −
CD44p561–580 v10/16 GDQDTFHPSGGSHTTHGSES −
CD44p571–590 16/17 GSHTTHGSESDGHSHGSQEG −
CD44p581–600 16/17 DGHSHGSQEGGANTTSGPIR −
CD44p591–606 17 GANTTSGPIRTPQIPEAAAA −

+, OD655 ≥ 0.3; −, OD655 < 0.1. * The CD44 exon-encoded regions are illustrated in Figure 1.
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3.2. Flow Cytometric Analysis of C44Mab-3 to CD44-Expressing Cells

We next investigated the reactivity of C44Mab-3 against CHO/CD44v3–10 and
CHO/CD44s cells by flow cytometry. C44Mab-3 recognized CHO/CD44v3–10 cells in a
dose-dependent manner (Figure 2A) but do not recognize either CHO/CD44s
(Figure 2B) or CHO-K1 (Figure 2C) cells. An anti-pan-CD44 mAb, C44Mab-46 [22], rec-
ognized CHO/CD44s cells (Supplementary Figure S2). Furthermore, C44Mab-3 also rec-
ognized pancreatic cancer cell lines, such as PK-1 (Figure 2D) and PK-8 (Figure 2E), in a
dose-dependent manner.
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Figure 2. Flow cytometry using C44Mab-3 against CD44-expressing cells. CHO/CD44v3–10 (A),
CHO/CD44s (B), CHO-K1 (C), PK-1 (D), and PK-8 (E) cells were treated with 0.01–10 µg/mL of
C44Mab-3, followed by treatment with Alexa Fluor 488-conjugated anti-mouse IgG (Red line). The
black line represents the negative control (blocking buffer).
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3.3. Determination of the Binding Affinity of C44Mab-3 by Flow Cytometry to CD44-Expressing
Cells and SPR with the Epitope Peptide

Next, we determined the binding affinity of C44Mab-3 to CHO/CD44v3–10 and PK-1
using flow cytometry. As shown in Figure 3, the KD of CHO/CD44v3–10 and PK-1 was
1.3 × 10−9 M and 2.6 × 10−9 M, respectively, indicating that C44Mab-3 possesses high
affinity for CD44v3–10 and endogenous CD44v5-expressing cells.
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Figure 3. The binding affinity of C44Mab-3 to CD44-expressing cells. CHO/CD44v3–10 (A) and
PK-1 (B) cells were suspended in 100 µL of serially diluted C44Mab-3 at the indicated concentrations.
Then, cells were treated with Alexa Fluor 488-conjugated secondary antibody. Fluorescence data
were collected and the apparent dissociation constant (KD) was calculated using GraphPad PRISM 8.
Error bars represent means ± SDs.

We also measured the KD of C44Mab-3 with the epitope peptide (CD44p311–330) using
Biacore X100. The binding kinetics and measured values are summarized in Supplementary
Figure S3. The KD of CD44p311–330 was 5.5 × 10−6 M.
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3.4. Western Blot Analysis

We next performed Western blot analysis to investigate the sensitivity of C44Mab-3.
Total cell lysates from CHO-K1, CHO/CD44s, CHO/CD44v3–10, PK-1, and PK-8 were
analyzed. As shown in Figure 4A, an anti-pan-CD44 mAb, C44Mab-46, recognized the
lysates from both CHO/CD44s (~75 kDa) and CHO/CD44v3–10 (>180 kDa). C44Mab-3
detected CD44v3–10 as bands of more than 180-kDa. Furthermore, C44Mab-3 detected
endogenous CD44v5-containing CD44v in PK-1 and PK-8 cells. However, C44Mab-3 did
not detect any bands from lysates of CHO-K1 and CHO/CD44s cells (Figure 4B). An
anti-PA16 tag mAb (NZ-1) recognized the lysates from both CHO/CD44s (~75 kDa) and
CHO/CD44v3–10 (>180 kDa) (Figure 4C). These results indicated that C44Mab-3 specifically
detects exogenous CD44v3–10 and endogenous CD44v5-containing CD44v.
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Figure 4. Western blot analysis using C44Mab-3. The cell lysates of CHO-K1, CHO/CD44s,
CHO/CD44v3–10, PK-1, and PK-8 (10 µg) were electrophoresed and transferred onto polyvinylidene
fluoride (PVDF) membranes. The membranes were incubated with 10 µg/mL of C44Mab-46 (A),
10 µg/mL of C44Mab-3 (B), 0.5 µg/mL of an anti-PA16 tag mAb (NZ-1) (C), and 1 µg/mL of an
anti-β-actin mAb (D). Then, the membranes were incubated with anti-mouse immunoglobulins
conjugated with peroxidase for C44Mab-46, C44Mab-3, and anti-β-actin. Anti-rat immunoglobulins
conjugated with peroxidase were used for NZ-1. The red arrows indicate CD44s (~75 kDa). The black
arrows indicate CD44v3–10 or CD44v5 (>180 kDa).
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3.5. Immunohistochemical Analysis Using C44Mab-3 against Tumor Tissues

We next examined whether C44Mab-3 could be used for immunohistochemical anal-
yses using FFPE sections. We first examined the reactivity of C44Mab-3 and C44Mab-46
in an oral SCC tissue. As shown in Supplementary Figure S4, C44Mab-3 exhibited a clear
membranous staining and could clearly distinguish tumor cells from stromal tissues. In
contrast, C44Mab-46 stained both. We then investigated the reactivity of C44Mab-3 and
C44Mab-46 in pancreatic carcinoma tissue arrays. Although we performed the antigen
retrieval using citrate buffer (pH 6.0) for pancreatic carcinoma tissue arrays in the same
way as with an oral SCC tissue, weak staining was observed. Therefore, we next used
EnVision FLEX Target Retrieval Solution High pH for the antigen retrieval procedure;
C44Mab-3 showed clear membranous staining in pancreatic carcinoma cells with a rela-
tively larger cytoplasm (Figure 5A). C44Mab-46 also stained the same type of pancreatic
carcinoma cells (Figure 5B). The staining intensity of C44Mab-3 was much stronger than
that of C44Mab-46 (Figure 5A,B). Furthermore, diffusely spread tumor cells in the stroma
were stained by both C44Mab-3 and C44Mab-46 (Figure 5C,D). In contrast, both C44Mab-3
and C44Mab-46 did not stain the typical ductal structure of PDAC (Figure 5E,F). In addition,
stromal staining using C44Mab-46 was observed in several tissues (Figure 5F). Importantly,
normal pancreatic epithelial cells were not stained by C44Mab-3 (Figure 5G). A similar
staining pattern was also observed in another tissue array (Supplementary Figure S5).
We summarized the data of immunohistochemical analyses in Table 2; C44Mab-3 stained
8 out of 20 cases (40%) (PA484, Figure 5) and 2 out of 6 cases (33%) (PA241c, Supplementary
Figure S5) of pancreatic carcinomas. These results indicated that C44Mab-3 could be useful
for immunohistochemical analysis of FFPE tumor sections and could recognize a specific
type of pancreatic carcinoma.

Table 2. Immunohistochemical analysis using C44Mab-3 against pancreatic carcinoma tissue arrays.

Tissue Array Age Sex Organ Pathology Diagnosis TNM Grade Stage Type C44Mab-3

PA241c 66 F Pancreas Adenocarcinoma T2N0M0 1 I malignant +
66 F Pancreas Adjacent normal pancreas tissue –
54 F Pancreas Adenocarcinoma T3N0M0 2 II malignant –
54 F Pancreas Adjacent normal pancreas tissue –
44 M Pancreas Adenocarcinoma T3N0M0 2 II malignant –
44 M Pancreas Adjacent normal pancreas tissue –
59 M Pancreas Adenocarcinoma T2N0M0 3 I malignant –
59 M Pancreas Adjacent normal pancreas tissue –
63 F Pancreas Adenocarcinoma T2N0M0 3 I malignant +
63 F Pancreas Adjacent normal pancreas tissue –
53 F Pancreas Adenocarcinoma T3N0M0 3 II malignant –
53 F Pancreas Adjacent normal pancreas tissue –

PA484 35 M Pancreas Normal pancreas tissue - - - normal –
38 F Pancreas Normal pancreas tissue - - - normal –
38 M Pancreas Normal pancreas tissue - - - normal –
60 M Pancreas Adenocarcinoma T3N0M0 2 II malignant –
68 F Pancreas Adenocarcinoma T2N0M0 2 I malignant +
54 F Pancreas Adenocarcinoma T3N0M0 2 II malignant –
42 F Pancreas Adenocarcinoma T3N0M0 2 II malignant –
65 M Pancreas Adenocarcinoma T3N0M0 2 II malignant –
75 F Pancreas Adenocarcinoma T3N0M1 2 IV malignant –
57 M Pancreas Adenocarcinoma T3N0M0 3 II malignant +
44 M Pancreas Adenocarcinoma T3N0M0 3 II malignant –
47 M Pancreas Adenocarcinoma T3N0M0 - II malignant –
41 M Pancreas Adenocarcinoma T4N1M0 2 III malignant –
64 F Pancreas Adenocarcinoma T3N0M0 2 II malignant –
58 F Pancreas Adenocarcinoma T3N0M0 3 II malignant –
47 F Pancreas Adenocarcinoma T3N1M0 3 III malignant +
78 M Pancreas Adenocarcinoma T2N0M0 3 I malignant +
49 M Pancreas Adenocarcinoma T3N0M0 2 II malignant +
53 F Pancreas Adenocarcinoma T3N0M0 3 II malignant +
60 M Pancreas Adenocarcinoma T2N0M0 3 I malignant +
57 F Pancreas Adenocarcinoma T2N0M0 3 I malignant –
61 M Pancreas Mucinous adenocarcinoma T3N0M1 2 IV malignant –
69 M Pancreas Undifferentiated carcinoma T2N0M0 - I malignant +

+, OD655 ≥ 0.3; −, OD655 < 0.1.
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Figure 5. Immunohistochemical analysis using C44Mab-3 and C44Mab-46 against pancreatic ade-
nocarcinomas and normal pancreatic tissues. After antigen retrieval, serial sections of pancreatic
carcinoma tissue arrays (Catalog number: PA484) were incubated with 1 µg/mL of C44Mab-3 or
C44Mab-46, followed by treatment with the Envision+ kit. The color was developed using 3,3′-
diaminobenzidine tetrahydrochloride (DAB), and the sections were counterstained with hematoxylin.
Scale bar = 100 µm. (A–F) pancreatic adenocarcinomas; (G,H) normal pancreas tissues.
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4. Discussion

PDAC is the most common type of pancreatic cancer and has extremely poor prognosis,
with a 5-year survival rate of approximately 10% [48]. Advances in therapy have only
achieved incremental improvements in overall outcome but can provide notable benefits
for undefined subgroups of patients. PDACs are heterogenous neoplasms with various
histology [4] and heterogenous molecular landscapes [5]. Therefore, the identification
of early diagnostic markers and therapeutic targets in each group has been desired. In
this study, we developed C44Mab-3 using the CBIS method (Figure 1) and determined its
epitope as variant-5-encoded region of CD44 (Table 1). Then, we showed the usefulness of
C44Mab-3 for multiple applications, including flow cytometry (Figures 2 and 3), Western
blotting (Figure 4), and immunohistochemistry of PDAC (Figure 5).

An anti-CD44v5 mAb (clone VFF-8) was previously developed and is mainly used for
the immunohistochemical analyses of tumors [49]. The epitope of VFF-8 was determined
as IHHEHHEEEETPHSTST in the v5-encoded region by ELISA [50]. As shown in Table 1,
C44Mab-3 recognized both CD44p311–330 and CD44p321–340 peptides, which commonly
possess the HPPLIHHEHH sequence. The epitope of C44Mab-3 partially shares that of
VFF-8. Further investigation of the detailed epitope mapping is required. In addition, CD44
is known to be heavily glycosylated [12], and the glycosylation pattern is thought to depend
on the host cells. Since the epitope of C44Mab-3 does not contain serine or threonine, the
recognition of C44Mab-3 is thought to be independent of the glycosylation.

Immunohistochemistry using VFF-8 and conventional RT-PCR analyses were per-
formed against PDAC [49]. VFF-8 recognized PDAC but not normal pancreas cells. Fur-
thermore, the RT-PCR analysis revealed that the exon v5 appeared in the chain containing
at least v4–10 in 80% of PDACs and the cell lines tested. The authors discussed that one
of the major differences between normal and PDAC was the linkage of CD44v5 to the
CD44v6-containing chain [49]. Our immunohistochemical analysis also support this find-
ing (Figure 5A,C,G). Furthermore, we found that C44Mab-3 could detect atypical types of
PDAC, including metaplastic and diffusely invaded tumor cells (Figure 5A,C). In contrast,
C44Mab-3 did not stain a typical ductal structure of PDAC (Figure 5E) and normal pan-
creatic epithelial cells (Figure 5G). In addition to conventional PDAC, the World Health
Organization has classified nine histological subtypes of PDAC, which further highlight the
morphologic heterogeneity of PDAC [4]. It is worthwhile to investigate whether CD44v5 is
expressed in a specific subtype of PDAC in a future study.

Large-scale genomic analyses of PDACs defined four subtypes: (1) squamous; (2) pan-
creatic progenitor; (3) immunogenic; and (4) ADEX, which correlate with histopathological
characteristics [5]. Among them, the squamous subtype is characterized as being enriched
for TP53 and KDM6A mutations and having upregulation of the ∆Np63 transcriptional
network, hypermethylation of pancreatic endodermal determinant genes, and a poor prog-
nosis [5]. ∆Np63 is known as a marker of basal cells of stratified epithelium and SCC [51]; it
is also reported to regulate HA metabolism and signaling [52]. Specifically, ∆Np63 directly
regulates the expression of CD44 through p63-binding sites that are located in the promoter
region and in the first intron of CD44 gene [52]. Therefore, CD44 transcription could be
upregulated in ∆Np63-positive PDAC. However, the mechanism of the variant 5 inclusion
during alternative splicing remains to be determined.

Clinical trials of anti-pan-CD44 and variant-specific CD44 mAbs have been conducted [53].
An anti-pan-CD44 mAb, RG7356, exhibited an acceptable safety profile in patients with ad-
vanced solid tumors expressing CD44. However, the study was terminated due to no evidence
of a clinical and pharmacodynamic dose-response relationship with RG7356 [54]. A clinical
trial of a humanized anti-CD44v6 mAb bivatuzumab−mertansine drug conjugate was con-
ducted. However, it failed due to severe skin toxicities [55,56]. The efficient accumulation of
mertansine was most likely responsible for the high toxicity [55,56]. Although CD44v5 is not
detected in normal pancreatic epithelium by C44Mab-3 (this study) and VFF-8 [49], CD44v5
could be detected in normal lung, skin, gastric, and bladder epithelium by VFF-8 [50]. For the
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development of the therapeutic use of C44Mab-3, further investigations are required to reduce
the toxicity to the above tissues.

We previously converted a mouse IgG1 subclass of mAbs into IgG2a mAb and pro-
duced defucosylated mAbs using fucosyltransferase-8-deficient CHO-K1 cells. The defu-
cosylated IgG2a mAbs showed potent antibody-dependent cellular cytotoxicity in vitro
and suppressed tumor xenograft growth [26,57–63]. Therefore, the production of a class-
switched and defucosylated version of C44Mab-3 is required to evaluate the antitumor
activity in vivo.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antib12020031/s1, Figure S1, Determination of the binding epitope
of C44Mab-3 by ELISA. Figure S2, Recognition of CHO/CD44s and CHO/CD44v3–10 by C44Mab-46
using flow cytometry. Figure S3, Measurement of dissociation constants (KD) between C44Mab-3
and the epitope peptide using SPR. Figure S4, Immunohistochemical analysis using C44Mab-3 and
C44Mab-46 against oral squamous cell carcinoma tissue. Figure S5, Immunohistochemical analysis
using C44Mab-3 and C44Mab-46 against pancreatic adenocarcinomas and normal pancreatic tissues.
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