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Abstract
Podoplanin (PDPN), also known as Aggrus, possesses three tandem repeat of platelet

aggregation-stimulating (PLAG) domains in its N-terminus. Among the PLAG domains, sia-

lylatedO-glycan on Thr52 of PLAG3 is essential for the binding to C-type lectin-like recep-

tor-2 (CLEC-2) and the platelet-aggregating activity of human PDPN (hPDPN). Although

various anti-hPDPN monoclonal antibodies (mAbs) have been generated, no specific mAb

has been reported to target the epitope containing glycosylated Thr52. We recently estab-

lished CasMab technology to develop mAbs against glycosylated membrane proteins.

Herein, we report the development of a novel anti-glycopeptide mAb (GpMab), LpMab-12.

LpMab-12 detected endogenous hPDPN by flow cytometry. Immunohistochemical analy-

ses also showed that hPDPN-expressing lymphatic endothelial and cancer cells were

clearly labeled by LpMab-12. The minimal epitope of LpMab-12 was identified as Asp49–

Pro53 of hPDPN. Furthermore, LpMab-12 reacted with the synthetic glycopeptide of

hPDPN, corresponding to 38–54 amino acids (hpp3854: 38-EGGVAMPGAEDDVVTPG-54),

which carries α2–6 sialylated N-acetyl-D-galactosamine (GalNAc) on Thr52. LpMab-12 did

not recognize non-sialylated GalNAc-attached glycopeptide, indicating that sialylated Gal-

NAc on Thr52 is necessary for the binding of LpMab-12 to hPDPN. Thus, LpMab-12 could

serve as a new diagnostic tool for determining whether hPDPN possesses the sialylation on

Thr52, a site-specific post-translational modification critical for the hPDPN association with

CLEC-2.

Introduction
Podoplanin (PDPN), the endogenous ligand of C-type lectin-like receptor-2 (CLEC-2) [1,2], is
highly expressed not only in various tumors including oral cancer, lung cancer, esophageal
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cancer, malignant brain tumors, mesotheliomas, testicular tumors, and osteosarcoma [3–13],
but also in normal cells such as lymphatic endothelial cells and podocytes [14,15]. PDPN is
also abundant in lung type I alveolar cells where it is called "T1α" [16]. We previously named
PDPN as "Aggrus" because PDPN possesses a platelet aggregation-inducing activity, which is
associated with cancer metastasis [3]. Further, PDPN is known as a specific lymphatic endothe-
lial marker [17], and PDPN-CLEC-2 signaling leads to platelet aggregation, which is critical for
the embryonic blood-lymphatic vascular separation [18].

Interaction of human PDPN (hPDPN) with CLEC-2 mainly involves Glu47 and Asp48 in
the platelet aggregation-stimulating domain-3 (PLAG3) and the α2–6 linked sialic acid residue
[19]. The sequence motif is conserved among PDPNs of various species [20]. CLEC-2 has a rec-
ognition motif in the form ‘‘EDXXXT/S,” where X is any amino acid, and T (or S) contains dis-
ialyl-core 1 [21]. In our previous studies, we established that the glycosylation on Thr52 is
critical for the binding of hPDPN to CLEC-2, and the sialylated O-glycan on Thr52 is required
for the platelet aggregating activity of hPDPN [3,21]. Therefore, the detection of site-specific
glycosylation on Thr52 is important for determining whether in given pathophysiological con-
ditions, hPDPN is prone to the CLEC-2 binding and has the potential to cause platelet
aggregation.

Here, we describe the development and characterization of a new anti-hPDPN mAb,
LpMab-12, which specifically binds to glycosylated Thr52, and might serve as a novel modality
to study hPDPN-CLEC-2 interaction.

Materials and Methods

Cell lines, animals, and tissues
Chinese hamster ovary (CHO)-K1, LN229, HEK-293T, COS-7, and P3U1 were obtained from
the American Type Culture Collection (ATCC, Manassas, VA). Human lymphatic endothelial
cell (LEC) was purchased from Cambrex (Walkersville, MD). The human glioblastoma cell
line, LN319, was donated by Dr. Kazuhiko Mishima (Saitama Medical University, Saitama,
Japan). LN229 was transfected with human PDPN plasmids (LN229/hPDPN) using Lipofecta-
mine 2000 (Thermo Fisher Scientific Inc., Waltham, MA) according to the manufacturer’s
instructions [22]. LN319/hPDPN-knock out (KO) cells (PDIS-6), HEK-293T/hPDPN-KO cells
(PDIS-2), and COS-7/hPDPN-KO cells (PDIS-4) were produced by transfecting CRISPR/Cas
plasmids, which targets hPDPN (Sigma-Aldrich Corp., St. Louis, MO), using a Gene Pulser
Xcell electroporation system (Bio-Rad Laboratories Inc., Philadelphia, PA). The amplified
hPDPN cDNA was subcloned into a pcDNA3 vector (Thermo Fisher Scientific Inc.) and a
FLAG epitope tag was added at the C-terminus. Substitution of amino acids to alanine in
hPDPN was performed using a QuikChange Lightning site-directed mutagenesis kit (Agilent
Technologies Inc., Santa Clara, CA). CHO-K1 cells were transfected with the plasmids using a
Gene Pulser Xcell electroporation system (Bio-Rad Laboratories Inc.). P3U1 and CHO-K1 cell
lines, and their counterparts transfected with hPDPN were cultured in L-glutamine-containing
RPMI 1640 medium (Nacalai Tesque, Inc., Kyoto, Japan), and LN229, LN319, HEK-293T,
COS-7 cell lines and their transfected counterparts were cultured in L-glutamine-containing
Dulbecco’s Modified Eagle’s Medium (DMEM) medium (Nacalai Tesque, Inc.), supplemented
with 10% heat-inactivated fetal bovine serum (FBS; Thermo Fisher Scientific Inc.) at 37°C in a
humidified atmosphere of 5% CO2 and 95% air. LEC was cultured in endothelial cell medium
EGM-2MV supplemented with 5% FBS (Cambrex Corp.). Antibiotics including 100 units/ml
of penicillin, 100 μg/ml of streptomycin, and 25 μg/ml of amphotericin B (Nacalai Tesque,
Inc.) were added to all media.
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Three female BALB/c mice (four-weeks old) were purchased from CLEA Japan (Tokyo,
Japan). Animals were housed under pathogen-free conditions. "The Animal Care and Use
Committee of Tohoku University" approved the animal experiments described herein. The
use of one oral cancer tissue was reviewed and approved by "Tokyo Medical and Dental Uni-
versity Institutional Review Board" [23]. Written informed consent was obtained for the
human cancer tissue samples used in this study. The use of human heart tissue sections for
immunohistochemical analysis was reviewed and approved by the "Partners Institutional
Review Board".

Hybridoma production
Three BALB/c mice were immunized by intraperitoneal (i.p.) injection of 1 × 108 LN229/
hPDPN cells together with Imject Alum (Thermo Fisher Scientific Inc.), as previously
described [22]. After several additional immunizations, a booster injection was given i.p. two
days before mice were euthanized by cervical dislocation and spleen cells were harvested. The
spleen cells were fused with P3U1 cells using PEG1500 (Roche Diagnostics, Indianapolis, IN).
The fused cells were grown in RPMI medium with hypoxanthine, aminopterin, and thymidine
selection medium supplement (Thermo Fisher Scientific Inc.). The culture supernatants were
screened using enzyme-linked immunosorbent assay (ELISA) for binding to recombinant
hPDPN purified from LN229/hPDPN cells.

Enzyme-linked immunosorbent assay (ELISA)
Recombinant hPDPN or glycopeptides were immobilized on Nunc Maxisorp 96-well immuno-
plates (Thermo Fisher Scientific Inc.) at a concentration of 1 μg/ml for 30 min. After blocking
with 1% BSA in 0.05% Tween20/phosphate buffered saline (PBS, Nacalai Tesque, Inc.), the
plates were incubated with culture supernatant followed by 1:1000 diluted peroxidase-conju-
gated anti-mouse IgG or anti-rat IgG (Dako; Agilent Technologies, Inc., Glostrup, Denmark).
The enzymatic reaction was conducted with a 1-Step Ultra TMB-ELISA (Thermo Fisher Scien-
tific Inc.). The optical density was measured at 655 nm using an iMark microplate reader (Bio-
Rad Laboratories Inc.).

Western blot analyses
Cell lysates (10 μg) were boiled in sodium dodecyl sulfate (SDS) sample buffer (Nacalai Tes-
que, Inc.). The proteins were electrophoresed on 5–20% polyacrylamide gels (Wako Pure
Chemical Industries Ltd.) and were transferred onto a PVDF membrane (EMDMillipore
Corp., Billerica, MA). After blocking with 4% skim milk (Nacalai Tesque, Inc.) in 0.05%
Tween20/PBS, the membrane was incubated with 1 μg/ml of LpMab-12, LpMab-7, 1E6
(anti-FLAG; Wako Pure Chemical Industries Ltd.), RcMab-3 (anti-IDH1) [24], or AC-15
(anti-β-actin; Sigma-Aldrich Corp.) and then with peroxidase-conjugated anti-mouse IgG
(1:1000 diluted; Dako), and developed with the ImmunoStar LD Chemiluminescence
Reagent (Wako Pure Chemical Industries Ltd.) using a Sayaca-Imager (DRC Co. Ltd.,
Tokyo, Japan).

Flow cytometry
Cell lines were harvested by brief exposure to 0.25% Trypsin/1 mM EDTA (Nacalai Tesque,
Inc.). After washing with PBS, the cells were incubated with LpMab-12 (1 μg/ml) for 30 min at
4°C, followed by the incubation with Oregon Green 488 goat anti-mouse IgG (Thermo Fisher

Monoclonal Antibody against Thr52 of Human Podoplanin

PLOS ONE | DOI:10.1371/journal.pone.0152912 March 31, 2016 3 / 13



Scientific Inc.). Fluorescence data were collected using a Cell Analyzer EC800 (Sony Corp.,
Tokyo, Japan).

Determination of the apparent binding affinity using flow cytometry
LN319 (2 × 105 cells) and LEC (1 × 105 cells) were resuspended in 100 μl of serially diluted
LpMab-12 (0.061–100 μg/ml) followed by Oregon Green 488 goat anti-mouse IgG (Thermo
Fisher Scientific Inc.). Fluorescence data were collected using a cell analyzer (EC800; Sony
Corp.). The apparent dissociation constants (KD) were obtained by fitting the binding iso-
therms using the built-in one-site binding models in GraphPad PRISM 6 (GraphPad software,
Inc., La Jolla, CA).

Immunohistochemical analysis of human heart tissues
Four-μm-thick histologic sections of the myocardium were deparaffinized in xylene, rehy-
drated, and subjected to 10 min heat-induced antigen retrieval in citric buffer (pH 6.0). Sam-
ples were blocked in 10% normal donkey serum (Jackson ImmunoResearch Inc., West Grove,
PA) for 30 min at room temperature, incubated with 10 μg/ml of LpMab-12 overnight at 4°C,
and then with Alexa Fluor 568-conjugated donkey anti-mouse IgG (Thermo Fisher Scientific
Inc.) for 1 h at 37°C. Subsequently, the sections were incubated with goat anti-human LYVE-1
(10 μg/ml; R&D Systems, Inc., Minneapolis, MN) and mouse anti-α-sarcomeric actin (α-SA)
(1:200 diluted; Sigma-Aldrich Corp.) for 2 h at 37°C, followed by fluorescein isothiocyanate
(FITC)-conjugated donkey anti-goat IgG and Alexa Fluor 647-conjugated donkey anti-mouse
IgM (15 μg/ml each; Jackson ImmunoResearch Inc.) and 4',6-diamidino-2-phenylindole dihy-
drochloride (DAPI) (1 μg/ml; Sigma-Aldrich Corp.) for 1 h at 37°C. The sections were then
treated with 1% solution of Sudan Black B (Sigma-Aldrich Corp.) for 30 min at room tempera-
ture, and mounted in Vectashield medium (Vector Laboratories, Inc., Road Burlingame, CA).
Images were acquired with Olympus FluoView FV100 laser scanning confocal microscope
equipped with CCD camera (Bio-Rad Laboratories Inc.).

Immunohistochemical analyses of oral cancer
Four-μm-thick histologic sections were deparaffinized in xylene and rehydrated. Without anti-
gen retrieval procedure, sections were incubated with 1 μg/ml of LpMab-12 or LpMab-7 for 1 h
at room temperature followed by treatment with Envision+ kit (Dako) for 30 min. Color was
developed using 3, 3-diaminobenzidine tetrahydrochloride (DAB; Dako), and then the sections
were counterstained with hematoxylin (Wako Pure Chemical Industries Ltd.).

Production of hPDPN glycopeptide
The hPDPN glycopeptide (hpp3854) with a GalNAc residue was purchased from Peptide Insti-
tute (Osaka, Japan), and used as an acceptor substrate. For synthesis of the sialylated GalNAc
on hpp3854, 25 mMHEPES (pH 7.0) containing 30 μM of acceptor substrate, 10 mMMnCl2
(Nacalai Tesque, Inc.), and 250 μMCMP-Neu5Ac (Sigma-Aldrich Corp.) was used. A half vol-
ume of purified ST6GalNAcT-I enzyme was added to the reaction mixture and incubated at
37°C for 24 h. The recombinant ST6GalNAcT-I enzyme was bound to anti-FLAGM2 affinity
gel (Sigma-Aldrich Corp.). After enzymatic reaction, the resin was removed by filtration using
an Ultrafree-MC column (EMD-Millipore). Then, the glycopeptides were purified using a
reversed-phase SPE cartridge (ZipTip C18; EMD-Millipore). The other glycopeptides were
produced sequentially as previously described [2].
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Assessment of antibody-mediated inhibition of hPDPN binding to
hCLEC-2
Inhibition assays were performed by ELISA. The recombinant proteins of hPDPN-Fc [2] and
hCLEC-2-Fc [19] were produced in our previous studies. The hPDPN-Fc was immobilized on
Nunc Maxisorp 96-well immunoplates (Thermo Fisher Scientific Inc.) at 1 μg/ml for 30 min.
After blocking with SuperBlock T20 (PBS) Blocking Buffer, LpMab-2 [22], LpMab-3 [25],
LpMab-9 [26], LpMab-12, LpMab-3 + LpMab-12, or isotype control (PMab-32) [27,28] were
added at 10 μg/ml for 30 min. The plates were incubated with biotinylated hCLEC-2-Fc (1 μg/
ml) followed by 1/1000 diluted peroxidase-conjugated streptavidin (GE Healthcare, Piscat-
away, NJ). The enzymatic reaction was conducted with a 1-Step Ultra TMB-ELISA (Thermo
Fisher Scientific Inc.). The optical density was measured at 655 nm using an iMark microplate
reader (Bio-Rad Laboratories Inc.). All data were shown as means ± SD. Statistical analysis by
one-way ANOVA was performed using GraphPad Prism 6 (GraphPad Software Inc., La Jolla,
CA).

Results

Establishment and characterization of a novel anti-hPDPNmAb LpMab-
12
We immunized mice with hPDPN-expressing LN229 glioma cells (LN229/hPDPN), which
possess cancer-type glycan patterns including highly sulfated polylactosamine and aberrant
sialylation [22]. Spleen cells were harvested and fused with P3U1 cells. Selection of hybridoma
was performed using ELISA and flow cytometry, and a novel anti-hPDPN LpMab-12 mAb
(mouse IgG1, kappa) was developed. Fig 1A shows that LpMab-12 reacted with LN229/hPDPN
and endogenous PDPN (HEK-293T, LN319, COS-7), and did not react with LN229 and
PDPN-KO cells (HEK-293T/hPDPN-KO, LN319/hPDPN-KO, COS-7/hPDPN-KO), indicat-
ing that LpMab-12 reliably detects hPDPN by immunohistochemistry.

As shown in Fig 1B and 1C, lymphatic endothelial cells, identified by a lymphatic marker
lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1), were clearly stained by LpMab-
12 in myocardial samples from human hearts, indicating that LpMab-12 is applicable for reli-
ably detecting hPDPN by immunohistochemistry.

Using flow cytometry analysis, apparent dissociation constant of LpMab-12 was determined
to be 1.2 × 10−8 M for LN319 and 1.8 × 10−8 M for LEC, suggesting that the binding affinity of
LpMab-12 is comparable with previously established anti-hPDPNmAbs [22] for hPDPN-
expressing cancer cells and normal cells (Fig 1D).

To confirm the utility of LpMab-12 for immunolabeling of tissues, we compared the reactiv-
ity of LpMab-12 with LpMab-7, the most sensitive anti-hPDPN mAb for this type of analysis
[29]. Both LpMab-12 (Fig 2A and 2B) and LpMab-7 (Fig 2E and 2F) strongly stained tumor
cells in a membranous/cytoplasmic-staining pattern. Lymphatic vessels were immunolabeled
clearly without background by LpMab-12 (Fig 2C and 2D) and LpMab-7 (Fig 2G and 2H).
Blood vessels were not stained by both mAbs (Fig 2C, 2D, 2G and 2H).

Epitope mapping
To determine the critical epitope for the LpMab-12 interaction with hPDPN, we compared the
mAb binding to the hPDPN carrying different point mutations. Using Western blot, we found
that LpMab-12 did not detect protein sequences with the following amino acid substitutions:
D49A, V51A, T52A, and P53A (Fig 3A).
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In agreement, flow cytometry analysis demonstrated that LpMab-12 did not react with
D49A, T52A, and P53A mutant proteins (Fig 3B) Thus, our results indicate that the epitope of
LpMab-12 is Asp49-Pro53. In our previous study we established that the sialylated O-glycan
on Thr52 is critical for platelet aggregating activity of hPDPN [21]. Therefore, the data point
that the epitope of LpMab-12 contains the sialylated O-glycan on Thr52 in the Asp49-Pro53
sequence of hPDPN.

To further clarify the essential epitope of LpMab-12, especially the essential glycan structure
detected by LpMab-12, we synthesized several glycopeptides of hPDPN, which include the
PLAG2 and PLAG3 domains (Fig 4). Specifically, we generated SAα2-6GalNAc + hpp3854;
Gal + GalNAc + hpp3854; SAα2-3Gal + GalNAc + hpp3854; Gal + SAα2-6GalNAc +
hpp3854; and SAα2-3Gal + SAα2-6GalNAc + hpp3854. LpMab-12 detected SAα2-6GalNAc +
hpp3854, Gal + SAα2-6GalNAc + hpp3854, and SAα2-3Gal + SAα2-6GalNAc + hpp3854
(Table 1). LpMab-9, the epitope of which was identified as residues 25–30 of hPDPN [26], did

Fig 1. Characterization of an anti-hPDPNmAb LpMab-12. (A) Flow cytometry assessment of LpMab-12
binding to LN229/hPDPN and LN229 cells, endogenous hPDPN-expressing (HEK-293T, LN319, COS-7),
and hPDPN-KO cells (HEK-293T/hPDPN-KO, LN319/hPDPN-KO, COS-7/hPDPN-KO). (B, C) Human
myocardial samples were indirectly immunolabeled with LpMab-12 (red), the lymphatic endothelial epitope,
LYVE-1 (green), and the myocytes were stained with anti-α-sarcomeric actin (α-SA) (grey). Nuclei were
counterstained with DAPI (blue). Arrows, lymphatic endothelial cells; arrowheads, vascular endothelial cells
of an artery. Scale bars: 100 μm (B) and 20 μm (C). Note the preferential labeling of lymphatic endothelium by
LpMab-12. (D) Determination of apparent binding affinity against LN319 and LEC by flow cytometry. The
apparent dissociation constants (KD) were obtained by fitting the binding isotherms using the built-in one-site
binding models.

doi:10.1371/journal.pone.0152912.g001
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not react with any glycopeptides of hpp3854. In contrast, LpMab-13 and LpMab-20, which
were recently established using CasMab technology [30], recognized all the glycopepties of
hpp3854. Collectively, these data indicate that the essential epitope of LpMab-12 is 49-DVVT
(SAα2-6GalNAc)P-53 (Fig 5).

Neutralization assays of hPDPN and CLEC-2
Finally, we determined whether LpMab-12 inhibits hPDPN-CLEC-2 interaction using ELISA.
Additional anti-hPDPN mAbs such as LpMab-2, LpMab-3, and LpMab-9 were employed as
controls. Similarly to LpMab-12, LpMab-2 [22], LpMab-3 [25] and LpMab-9 [26] include both
peptide and glycan as their epitopes; accordingly, we collectively named these mAbs as anti-
glycopeptide mAbs (GpMabs). Anti-rabbit PDPN antibody PMab-32 was used as an additional
negative control, since it is of the same isotype (mouse IgG1, kappa) with LpMab-12 [27]. As
shown in Fig 6, LpMab-12 impaired the binding of hCLEC-2-Fc to hPDPN-Fc (10.3% inhibi-
tion), whereas LpMab-2 did not affect the hPDPN/hCLEC-2 interaction. Interestingly,
LpMab-3, the epitope of which includes Thr76 of hPDPN [25] also moderately reduced the
hPDPN/hCLEC-2 binding (7.1% inhibition); and LpMab-9, the epitope of which includes
Thr25 of hPDPN, impaired the hPDPN/hCLEC-2 interaction to a lesser extent (3.6% inhibi-
tion). Importantly, the combination of LpMab-12 and LpMab-3 reduced the hPDPN/hCLEC-2
interaction more effectively (14.7% inhibition) than either LpMab-12 or LpMab-3 alone, indi-
cating that a combination of several sialic acids in the hPDPN protein might be important for
its optimal interaction with hCLEC-2 in this in vitro assay.

Fig 2. Immunohistochemical analysis of the oral cancer and heart tissue samples using LpMab-12
and LpMab-7. Serial sections of the tissues with oral cancer were incubated with LpMab-12 (A-D) or LpMab-
7 (E-H), followed by the development with the EnVision+ kit and counterstaining with hematoxylin, or the HE
staining (I-L). Arrows, lymphatic endothelial cells; arrowheads, vascular endothelial cells. Scale bars:
100 μm. LpMab-12 stains lymphatic vessels with high efficiency, similarly to LpMab-7.

doi:10.1371/journal.pone.0152912.g002
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Discussion
As of today, almost all anti-hPDPNmAbs produced using conventional methods react with
the non-glycosylated peptide spanning the PLAG1-3 domains [7,12,31] or PLAG4 domain
[32]. Our group also produced numerous mAbs against mouse, rat and rabbit PDPN proteins
[27,33,34]. Rabbit polyclonal antibodies, which were reported by Matsui et al., also recognize
PLAG1-3 domains, which are shown to be immunodominant antigenic sites of PDPN [35].
Recently, we established the CasMab technology for the production of cancer-specific mAbs
and anti-glycopeptide mAbs (GpMabs). Using CasMab platform, we generated multiple mAbs,
including LpMab-2, LpMab-3, LpMab-7, LpMab-9, LpMab-10, and LpMab-17, which target
different epitopes of hPDPN [22,23,25,26,29,36–38]. Furthermore, using CasMab approach,

Fig 3. Epitopemapping of LpMab-12 byWestern blot analysis and flow cytometry. (A) CHO-K1 cells
were transfected with a plasmid expressing wild-type hPDPN with the FLAG-tag added to the C-terminus
(WT), or the FLAG-tag hPDPN containing a point mutation in the sequence E47A-E57A, as indicated in the
figure. Total cell lysates from the transfected cell lines were analyzed byWestern blot with LpMab-12 or
LpMab-7, as a positive control for hPDPN expression. Immunoblot with anti-FLAG antibody was also used as
well to establish the expression of exogenous hPDPN. Anti-IDH1 and anti-β-actin mAbs were used as
internal controls to show that total proteins are equal protein load. Red arrow, 40-kDa; blue arrow, 30-kDa. (B)
CHO-K1 cells transfected as in (A) were analyzed by flow cytometry using indirect immunolabeling with
LpMab-12. Cells exposed to the secondary anti-mouse IgG only were used as a negative control (Control).

doi:10.1371/journal.pone.0152912.g003
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we produced mAbs that detect residue-specific O-glycosylation in hPDPN: LpMab-2 on
Thr55/Ser56, LpMab-3 on Thr76, and LpMab-9 on Thr25. Although the glycosylation on
Thr52 is the most critical for the binding of hPDPN to CLEC-2 and platelet aggregating-activ-
ity of hPDPN [2,19], no GpMab against Thr52-containing epitope has been developed. The
direct detection of glycosylation on Thr52 using specific mAb might be implemented for inves-
tigating the function of hPDPN or clinical diagnosis.

In this study, we successfully developed LpMab-12 (mouse IgG1, kappa), which specifically
detects the glycosylation on Thr52 of hPDPN by flow cytometry (Figs 1 and 3), Western blot
(Fig 3), and immunohistochemical analysis (Figs 1 and 2). Because this modification was previ-
ously shown to be of critical importance for hPDPN-CLEC-2 interaction [2,19], we hypothe-
sized that LpMab-12 might interfere with the hPDPN-binding to CLEC-2. We found that
LpMab-12 only partially and weakly reduced the hPDPN binding to hCLEC-2, yet with a
higher efficiency than the other anti-hPDPN glycopeptide mAbs (GpMabs), such as LpMab-3
and LpMab-9 (Fig 6). These results indicate that hCLEC-2 might interact with several sialic
acids attached to Ser/Thr of hPDPN. Indeed, a novel platelet aggregation-stimulating domain-
4 (PLAG4) of hPDPN (Fig 5) was recently suggested [32], further supporting the notion that
complex interactions might be required for an optimal association of hPDPN with hCLEC-2.

Our data show that LpMab-12 is advantageous for the use for hPDPN detection in fixed
paraffin-embedded tissue sections, since, unlike other anti-hPDPN antibodies, including

Fig 4. Binding assay of LpMab-12 against sialylated glycopeptide of hPDPN using ELISA. Strategy for
the sialylated glycopeptide synthesis. SA, sialic acid; Gal, galacose; GalNAc,N-acetyl-D-galactosamine.

doi:10.1371/journal.pone.0152912.g004

Table 1. The reaction of LpMab-12 against glycopeptides of hPDPN.

Anti-hPDPN mAbs

Glycopeptides LpMab-9 LpMab-12 LpMab-13 LpMab-20

GalNAc + hpp3854 - - +++ +++

Gal + GalNAc + hpp3854 - - +++ +++

SAα2-6GalNAc + hpp3854 - +++ +++ +++

SAα2-3Gal + GalNAc + hpp3854 - - +++ +++

Gal + SAα2-6GalNAc + hpp3854 - +++ +++ +++

SAα2-3Gal + SAα2-6GalNAc + hpp3854 - +++ +++ +++

+++, 0.5≦OD655; -, negative

doi:10.1371/journal.pone.0152912.t001
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LpMab-2 and LpMab-3 [22,25], or D2-40 and 18H5 [31], LpMab-12 does not necessitate anti-
gen retrieval (Fig 2). Further, in most PDPN immunolabeling protocols, the antibodies have to
be used at a concentration of 1 μg/ml or higher [22,25,31], whereas relatively low concentra-
tions of LpMab-12 (less than 0.1 μg/ml) are sufficient to detected the lymphatic endothelial
cells in fixed samples (data not shown).

Lec2 mutant of CHO cells lacks a CMP-sialic acid transporter, and is not able to add sialic
acid to glycans. In contrast, Lec8 mutant of CHO cells lacks a UDP-Gal transporter and is not
able to add Gal to glycans [39]. Our results show that LpMab-12 detects hPDPN with sialylated
O-GalNAc (Fig 4 and Table 1); therefore, LpMab-12 did not react with Lec2/hPDPN (S1B Fig).
Surprisingly, we observed that LpMab-12 did not react with Lec8/hPDPN cells even at

Fig 5. Schematic summary of the epitopes for several anti-hPDPNmAbs.Glycosylation sites are shown
(O-glycan). Numbers indicate amino acid position. GpMab, anti-glycopeptide mAb; PLAG, platelet aggregation-
stimulating.

doi:10.1371/journal.pone.0152912.g005

Fig 6. The hPDPN-hCLEC-2 interaction was reduced by LpMab-12. Inhibition assay was performed using
ELISA. Recombinant immobilized hPDPN-Fc was incubated with PMab-32 (Control), LpMab-2, LpMab-3,
LpMab-9, LpMab-12, or LpMab-3 + LpMab-12, followed by sequential exposure to biotinylated hCLEC-2-Fc
and peroxidase-conjugated streptavidin. The enzymatic reaction was conducted with a 1-Step Ultra
TMB-ELISA. The optical density was measured at 655 nm. Each data bar represents the average of five
independent wells. Error bars show standard deviation (SD). N.S., not significant, * P < 0.05, ** P < 0.01,
****P < 0.0001, as determined by one-way ANOVA.

doi:10.1371/journal.pone.0152912.g006
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relatively high concentrations of 10 μg/ml or 100 μg/ml (S1C Fig). Future studies are warranted
to determine the reason for the deficiency in O-GalNAc sialylation in Lec8/hPDPN.

Conclusion
Our study suggests that LpMab-12 is useful for determining whether hPDPN possesses the
site-specific sialylation on Thr52, an important post-translational modification for the associa-
tion of hPDPN with CLEC-2 and activation of platelet aggregation. Furthermore, the combina-
tion of different epitope-specific mAbs, especially GpMabs, might be advantageous for the
PDPN-targeting therapies or disease diagnosis.
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