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Methionine adenosyltransferase (MAT) catalyzes the syn-
thesis of S-adenosylmethionine (SAM). As the sole methyl-
donor for methylation of DNA, RNA, and proteins, SAM
levels affect gene expression by changing methylation patterns.
Expression of MAT2A, the catalytic subunit of isozyme MAT2,
is positively correlated with proliferation of cancer cells; how-
ever, how MAT2A promotes cell proliferation is largely un-
known. Given that the protein synthesis is induced in
proliferating cells and that RNA and protein components of
translation machinery are methylated, we tested here whether
MAT2 and SAM are coupled with protein synthesis. By
measuring ongoing protein translation via puromycin labeling,
we revealed that MAT2A depletion or chemical inhibition
reduced protein synthesis in HeLa and Hepa1 cells. Further-
more, overexpression of MAT2A enhanced protein synthesis,
indicating that SAM is limiting under normal culture condi-
tions. In addition, MAT2 inhibition did not accompany
reduction in mechanistic target of rapamycin complex 1 ac-
tivity but nevertheless reduced polysome formation. Polysome-
bound RNA sequencing revealed that MAT2 inhibition
decreased translation efficiency of some fraction of mRNAs.
MAT2A was also found to interact with the proteins involved
in rRNA processing and ribosome biogenesis; depletion or in-
hibition of MAT2 reduced 18S rRNA processing. Finally,
quantitative mass spectrometry revealed that some translation
factors were dynamically methylated in response to the activity
of MAT2A. These observations suggest that cells possess an
mTOR-independent regulatory mechanism that tunes trans-
lation in response to the levels of SAM. Such a system may
acclimate cells for survival when SAM synthesis is reduced,
whereas it may support proliferation when SAM is sufficient.
* For correspondence: Kazuhiko Igarashi, igarashi@med.tohoku.ac.jp;
Toshifumi Inada, toshiinada@ims.u-tokyo.ac.jp.

© 2022 THE AUTHORS. Published by Elsevier Inc on behalf of American Society for
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Translation is the single largest energy expenditure sector of
cellular metabolism which uses around 20% of the total energy
of cells (1–3). Since aberrant translation leads to dissipation of
energy resources and various pathological consequences,
translation is tightly regulated by multiple signaling pathways
in cells (4). Growth and proliferation of mammalian cells
require signal-mediated stimulations of translation initiated by
the availability of extracellular factors such as insulin and other
growth factors, nutrition, endocrine secretions and metabo-
lites. The proliferating cells integrate the presence of these
extracellular molecules to induce translation (5, 6). So far as
explored, the phosphoinositide 3-kinase–AKT and the
mitogen-activated protein kinase pathways are the main up-
stream controllers of translation in cells (7, 8). Both pathways
converge on mechanistic target of rapamycin complex 1
(mTORC1) to regulate translation. mTORC1 phosphorylates
the inhibitory eukaryotic translation initiation factor 4E
binding proteins (4E-BP1 and 2) to detach them from
eukaryotic translation initiation factor 4E. The released
eukaryotic translation initiation factor 4E then aids the for-
mation of the translation initiation complex at the 50 ends of
mRNA, thereby enhancing global translation (9). Besides the
global translation stimulation, mTORC1 also boosts trans-
lation of mRNA bearing the 50 terminal oligopyrimidine tract
(10). Moreover, mTORC1 phosphorylates ribosomal protein
p70 S6 kinase (S6K) that is required for the positive regulation
of eukaryotic initiation factor 4A (eIF4A) and 4B (eIF4B) to
augment translation (11–14).

Cancer cells acquire the ability to induce protein synthesis,
growth, and proliferation by activating the translation
signaling pathways which facilitate the expression of proteins
required for cell survival and growth (15–17). In addition,
translation induction can be caused by alteration of expression
and/or phosphorylation of diverse proteins involved in trans-
lation. For example, consecutive expression and phosphory-
lation of eukaryotic initiation factor 4F accelerated translation
initiation (15, 18–20). Reduced expression or increased
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mTORC1-independent translation control by MAT2A and SAM
phosphorylation of 4E-BPs promoted translation in pancreatic
cancer (21). Overexpression of eukaryotic initiation factor 3
induced global protein synthesis and increased translation of
oncogenic transcripts in immortalized fibroblastic cells (22).
Due to the contribution of mTOR to translation, cellular
growth, and proliferation, various drugs targeting the mTOR
pathway are being developed for cancer therapy (23–25).
However, one of the major problems of mTOR inhibition for
cancer therapy is that upon inhibition of a protein in the
mTOR signaling, cancer cells develop a resistance to the
chemotherapy by activating compensatory proteins by various
feedback mechanisms (26). For example, upon inhibition of
mTORC1, the AKT and mitogen-activated protein kinase
pathways are activated by feedback mechanisms to promote
cell survival (27–31). Therefore, it is of utmost importance to
explore new mTOR-independent translation regulatory
mechanisms to propose novel targets for cancer therapy.

The one-carbon metabolic cycle of methionine is intimately
connected with the mTOR signaling (32). It is known that the
mTOR signaling is responsive to S-adenosylmethionine
(SAM), one of the one-carbon cycle metabolites, owing to the
SAMTOR protein acting as the SAM-sensor (33). SAM is
produced from methionine and ATP by methionine adeno-
syltransferase (MAT). In mammals, three isozymes of MAT
are known (34, 35). MAT1 and MAT3 are found in liver,
whereas MAT2 is expressed in all tissues except for adult liver
(36–38). MAT2 consists of two subunits: MAT2A and
MAT2B, which form a complex with a molecular ratio of 2:1.
MAT2A is the catalytic subunit, whereas MAT2B has been
suggested to regulate the catalytic activity (39) or stability (40)
of MAT2A. MAT2A is expressed in proliferating fetal hepa-
tocytes and is replaced by MAT1 in adult quiescent hepato-
cytes (41). Upon partial hepatectomy, MAT2A is upregulated
during regeneration (42). Also, the expression of MAT2A is
known to be high in various cancers including those of liver
(43, 44), uterine cervix (45), colon (46), and breast (47). These
observations suggest that MAT2A is required for cell growth
and proliferation. Recently, MYC has been shown to induce
MAT2A expression (48), which explains how MAT2A is
upregulated in proliferative tissue and particularly in cancer.
These pieces of evidence suggest that SAM synthesis by
MAT2A is connected to cancer cell growth and proliferation.
However, whether the connection is mediated exclusively by
the mTOR pathway remains unknown.

SAM is the essential methyl group donor in biological
methylation of various biomolecules. Methylation in DNA,
RNA, and histone proteins is well-studied due to its critical
roles in gene expression control. Besides histones, non-
histone proteins such as ribosomal proteins and translation
factors are also methylated (49). Although the biological
significance of methylation in ribosomal proteins is yet to be
interrogated, methylation of several translation factors is
known to regulate translation. For example, depletion of the
methyltransferase for lysine 165 of eEF1A (eEF1A165K)
induced translation of proteins related to ribosome biogenesis
and chromatin. In contrast, it reduced translation of proteins
2 J. Biol. Chem. (2022) 298(7) 102084
important for unfolded protein response (50). Methylation of
lysine 55 of eEF1A (eEF1A55K) promoted global translation
in a human lung cancer cell line (51). As some of the protein
components of translation machinery are methylated, we
hypothesized that MAT2 and SAM are coupled with protein
synthesis in mammalian cells by affecting their methylation.
In this study, we discovered that MAT2A promotes protein
synthesis in an mTORC1-independent manner. Polysome
profiling and RNA sequencing revealed that MAT2A is
required for the formation of active polysome and mainte-
nance of translation efficiencies of mRNAs. Moreover, we
found that MAT2A interacts with ribosome biogenesis fac-
tors and contributes to processing of the 18S rRNA and dy-
namic methylation of translation factors.
Results

MAT2A is essential for global protein synthesis in the
mammalian cells

To reveal the involvement of MAT2A in protein synthesis,
we examined the global protein synthesis rate upon Mat2a
knockdown in the mouse hepatocellular carcinoma cell line
(Hepa1) by using surface sensing of translation (SUnSET) (52).
Elongating peptides in cultured cells were labeled for 30 min
with the aminoglycoside antibiotic puromycin. Translation
elongation is inhibited when translating ribosome incorporates
puromycin into nascent proteins. The resulting short peptides
labeled with puromycin can be detected by Western blotting
using an antipuromycin antibody, which enables examination
of the translation rate. We found that the global translation
was reduced in Hepa1 cells in which MAT2A was depleted by
siRNA (Figs. 1A and S1A). Treatment of cells with the trans-
lation inhibitor cycloheximide (CHX) greatly diminished the
puromycin-labeled proteins, indicating that puromycin spe-
cifically labeled the nascent peptides (Fig. 1A: Lanes 5 and 6).
In line with knockdown of Mat2a, chemical inhibition of
MAT2A by cycloleucine (cLEU), which is a substrate-
competitive inhibitor of MAT2 (53, 54), significantly reduced
protein synthesis in HeLa cells (Fig. 1B). Note that the
reduction in protein synthesis occurred within 1 h after the
MAT2A inhibition (Fig. S1B). Next, we examined the effect of
MAT2A overexpression on protein synthesis. We established
HeLa cells stably expressing FLAG-Bio-tagged MAT2A (FB-
MAT2A) (Fig. S1C). The FB-MAT2A protein was considered
as functional as the native MAT2A protein since immuno-
fluorescence microscopy using an anti-FLAG antibody
confirmed that the FB-MAT2A was localized in nucleus as
expected (Fig. S1D), and streptavidin affinity purification of
FB-MAT2A showed its interaction with the endogenous
MAT2B protein (Fig. S1E). By single-cell colony isolation of
these cells, a high FB-MAT2A-expressing clone was selected
for the following experiment. The FB-MAT2A-expressing cells
cultured under a normal condition showed higher protein
synthesis compared to the control cells established using the
empty vector (FB-EV), indicating that MAT2A promoted
protein synthesis (Fig. 1C).



L:   1   2     3    4    5    6

L:   1      2     3      4    

CHX    -   -   -  -   +  +
si-

co
ntr

ol 

(IB
) 

Pu
ro

m
yc

in
 la

be
le

d 
pe

pt
id

es

si-
MAT2A

 

si-
co

ntr
ol 

si-
MAT2A

(IB)
β-ACTIN

(IB)

 

MAT2A 

(kDa)

250
150

100
75

50

37

25

20

37
75

50

37

50

140
100
75
60

35

25

45

45

35

(kDa)

(IB
)

Pu
ro

m
yc

in
 

la
be

le
d 

pe
pt

id
es

  

(IB) 
β-ACTIN  

cLEU (mM) 100 20 30
B

0.00

0

1

2

3

4

0.25

0.50

1.00

1.25

1.50 p = 0.001
p = 0.001
p = 0.001

p = 0.040

p = 0.045

p = 0.019

p = 0.101
p = 0.023

In
te

ns
ity

 
(P

ur
om

yc
in

 la
be

le
d

pe
pt

id
es

/ β
-A

C
TI

N
)

In
te

ns
ity

 
(P

ur
om

yc
in

 la
be

le
d 

pe
pt

id
es

/ G
AP

D
H

)

S6K

Phos-S6K
(T389)

L:   1    2   3   4   5   6   7    8   9   10

L: 1 2 3 4 5 6 7 8 9 10

Rap
am

yc
in

Serum starvation

Serum stimulation

FB-MAT2A - - + - + - + - ++
FB-EV + + - + - + - + --

1 hr 3 hr

(IB
) 

Pu
ro

m
yc

in
 la

be
le

d 
pe

pt
id

es

GAPDH

FB-MAT2A
Endo-MAT2A

(kDa)

180
100
75

60

45

35

25

20

15

45

35

60

45

75

75

60

60

45

45

 

 

cLEU (mM) 100 20 30

A C

Figure 1. MAT2A is obligatory for global protein synthesis in mammalian cells. A, SUnSET method revealed a reduction in global translation upon
MAT2A knockdown in Hepa1 cells (lanes 3 and 4) compared to control (lanes 1 and 2). Cycloheximide treatment (CHX, at 50 μg/ml for 4 h) ensured the
specificity of the anti-puromycin antibody (lanes 5 and 6). B, MAT2A inhibition by cLEU reduced protein synthesis. HeLa cells were treated with cLEU at the
indicated concentrations for 6 h (top panel). The intensity of puromycin-labeled peptides on the blot was quantified and was normalized to that of β-ACTIN
(bottom panel). Mean values ± SD are shown (n = 4 biological replicates of the experiment). C, SUnSET assay was performed with HeLa cells stably
expressing FB-MAT2A in the presence (lanes 1 and 2) or absence (lanes 3 and 4) of rapamycin (400 nM for 1 h). Cells were cultured in serum-free media for
24 h (serum starvation, lanes 5 and 6) and then were recultured in 10% FBS-containing media for the indicated periods (serum stimulation, lanes 7–10) (top
panel). The intensity of puromycin-labeled peptides on the blot was quantified and was normalized to that of GAPDH (bottom panel). Mean values ± SD are
shown (n = 3 biological replicates of the experiment). cLEU, cycloleucine.

mTORC1-independent translation control by MAT2A and SAM
MAT2A-regulated protein synthesis is independent of mTORC1
activity

To investigate whether the MAT2A-promoted protein
synthesis involved mTOR, we cultured these cells under
serum starvation for 24 h and then restimulated the cells with
serum. Serum starvation did not affect protein synthesis in
these cells. Restimulation of the starved cells with serum for
3 h increased protein synthesis in the FB-MAT2A-expressing
J. Biol. Chem. (2022) 298(7) 102084 3



mTORC1-independent translation control by MAT2A and SAM
cells but not in the control cells (Fig. 1C, lanes 5–10).
Importantly, the effect of FB-MAT2A was not diminished by
the treatment with rapamycin. These results indicate that
MAT2A does not rely on the mTORC1 activity to promote
protein synthesis. mTORC1 is activated by various stimuli
including growth factors and nutrients such as amino acids,
exerting effects on translation machinery (Fig. S2). To further
investigate whether MAT2A affects the mTOR signaling
pathway, we examined the activation status of mTORC1 upon
MAT2A perturbations. S6K is the downstream target of
mTORC1. Since the amount of phosphorylated S6K (Phos-
S6K) directly reflects the activity of the mTORC1 signaling
(55), we examined the amount of Phos-S6K by Western
blotting. The FB-MAT2A-expressing cells did not show any
appreciable alteration in Phos-S6K compared to the control
cells under the normal conditions or when the cells were
starved and were restimulated with serum (Fig. 1C). Phos-
S6K was unchanged upon MAT2A inhibition by cLEU in
both HeLa (Fig. 2A) and Hepa1 (Fig. 2B) cells, whereas it was
reduced in response to rapamycin. These results suggest that
the effect of MAT2A on protein synthesis is not contingent
on the activity of mTORC1.

MAT2A and SAM are essential for maintaining active
translation in cells

To elucidate the characteristics of the MAT2A-regulated
protein synthesis, we carried out a polysome profiling of
HeLa cells upon MAT2A inhibition by cLEU. Heavy polysome
(also called active polysome) formation was impaired upon
MAT2A inhibition with a concomitant increase of monosome
(80S) and its subunits (40S and 60S) (Fig. 3A). These charac-
teristics of polysome profile suggest that translation initiation
to form monosomes was hampered, and only a smaller fraction
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Figure 2. MAT2A-regulated protein synthesis is independent of mTORC1.
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of successfully formed monosomes proceeded to active poly-
some formation.

To investigate the MAT2A-regulated translational control,
we isolated translating mRNA from the polysome fractions
and performed RNA sequencing. We found that after MAT2A
inhibition, 507 transcripts were upregulated, and 193 were
downregulated in the polysome occupancy (Fig. 3B and
Table S1). The translation efficiency (TE) of each mRNA was
calculated by a ratio of reads number between polysome
fraction and total RNA, which showed that the number of
transcripts with decreased TE (135) by MAT2A inhibition was
greater than that of transcripts with increased TE (120)
(Fig. 3C and Table S1). Next, we performed RNA-sequencing
of the cells treated with or without cLEU. A total of 1147 and
328 transcripts, respectively, were upregulated and down-
regulated significantly (q < 0.01) in total RNA fractions after
MAT2A inhibition (Fig. 3D and Table S1). Gene ontology
(GO) analysis revealed that the expression of genes involved in
ribosome biogenesis was reduced in the cLEU-treated cells
(Fig. 3E). These results strongly suggested the existence of a
translation regulation mechanism involving MAT2A and
SAM, which concerns the expression of a specific subset of
mRNA through the altered formation of polysome.

MAT2A interacts with proteins involved in ribosome
biogenesis and translation

To understand the mechanism of the regulation of protein
synthesis by MAT2A, we aimed to elucidate the MAT2A-
interacting protein network. We purified FB-MAT2A from
HeLa cells stably expressing FB-MAT2A by affinity purifica-
tion with streptavidin. The purified proteins were then sepa-
rated by sodium dodecyl sulphate-polyacrylamide gel
electrophoresis (SDS-PAGE), were in-gel trypsin-digested, and
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mTORC1-independent translation control by MAT2A and SAM
were analyzed by liquid chromatography with tandem mass
spectrometry (LC-MS/MS) (Fig. 4A). Coomassie Brilliant Blue
(CBB) staining (Fig. 4B) and Western blotting (Fig. 4C) of the
purified protein showed that the purification successfully
enriched proteins interacting with FB-MAT2A. We found that
81 proteins were specifically copurified with FB-MAT2A
J. Biol. Chem. (2022) 298(7) 102084 5
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mTORC1-independent translation control by MAT2A and SAM
(Table S2). In the result of GO analysis, the top enriched terms
were related to ribosome biogenesis and/or functions such as
ribonucleoprotein complex biogenesis, rRNA processing,
rRNA metabolic process, preribosome, small nucleolar ribo-
nucleoprotein complex, and snoRNA binding (Figs. 4D and S3,
6 J. Biol. Chem. (2022) 298(7) 102084
A and B), suggesting an involvement of MAT2A in ribosome
biogenesis and/or ribosome function. Notably, the core protein
components of the snoRNP complex (NOP56, NOP58 and
SNU13), except for FBL (Fibrillarin), were found in the puri-
fied proteins (Fig. 4E). The snoRNP complex plays an
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important role in ribosome biogenesis by 20-O-methylation of
rRNA, and this methylation also enhances the translation
capability of ribosome (56). These results strongly support the
imperativeness of MAT2A in the ribosome function.

MAT2A is required for rRNA processing

Mammalian ribosomal RNA is transcribed as a single large
transcript called the 47S pre-rRNA. This pre-rRNA bears
external and internal transcribed spacers (ITSs), which must
be removed by the complex process of endonucleolytic and
exonucleolytic cleavages at specific sites to produce the mature
18S, 5.8S, and 28S rRNAs (57) (Fig. S4A). Among the MAT2A-
interacting ribosome biogenesis factors, we further confirmed
the interaction of IMP4 with MAT2A by copurification of
poly-histidine-tagged IMP4 (His-IMP4) with FB-MAT2A
(Fig. 4F). IMP4 is a component of the small subunit proc-
essome. The small subunit processome mediates 18S rRNA
maturation by cleavage at A0, A1, and A2 sites (58). To
elucidate whether MAT2A is required for the pre-rRNA
transcription, we quantified the pre-rRNA content in Mat2a-
knocked-down Hepa1 cells by qPCR using a primer pair tar-
geting the 50 external transcribed spacer sequence (59). We
observed that Mat2a knockdown did not alter the rRNA
transcription in Hepa1 cells (Fig. S4B), suggesting that
MAT2A is dispensable for rRNA transcription. MAT2A
interacted with the snoRNP complex which plays a critical role
in rRNA methylation and maturation (60–62) (Fig. 4E). We
also observed the interaction of MAT2A with IMP4, one of the
18S rRNA cleavage factors. These observations led to a hy-
pothesis that MAT2A might be involved in rRNA maturation.
Indeed, Mat2a knockdown decreased the 18S/28S rRNA ratio
with reduced production of the 18S rRNA (Fig. 5, A and B).
Chemical inhibition of MAT2A by cLEU also reduced the 18S/
28S ratio in a concentration-dependent manner (Figs. 5C and
S4C). Alterations in rRNA processing were further investi-
gated by measuring the major pre-rRNA stages by Northern
blot using ITS1 and ITS2. The reduced production 18S rRNA
upon the cLEU treatment was supported by the result that a
weakened signal of 18S-E, the immediate precursor of the
mature 18S rRNA, was detected using the ITS1 probe (Fig. 5D,
Panel 1). Interestingly, we observed a prominent accumulation
of 30S and 32S pre-rRNAs, the precursors of the mature 18S
rRNA (Fig. 5D, Panels 1 and 2). The decreased 18S rRNA was
also observed (Fig. 5D, Panel 3). Considering that rRNA
transcription was not affected by MAT2A knockdown, the
reduced production of the 18S rRNA could be a result of
disturbed 18S rRNA processing. These observations suggest
that MAT2A is involved in 18S rRNA cleavage and processing.
Insufficient 18S rRNA maturation may have partially
contributed to the reduction of protein synthesis upon
MAT2A depletion or inhibition.

MAT2A contributes to dynamic methylation of proteins
involved in translation

Many proteins involved in translation are methylated in
E. coli, yeast, and mammals (49, 51, 63–66). Although some of
these methylations appeared important for translation (50,
51, 67), the biological significance of the majority is unclear.
Therefore, we hypothesized that a reduction of methylation of
proteins involved in translation might cause the protein
synthesis reduction upon MAT2A inhibition. To compare
methylation of proteins upon MAT2A inhibition, we
employed a variant approach of stable isotope labeling by
amino acid in cell culture (SILAC) named heavy methyl
SILAC (68) followed by identification and quantification of
methylated peptides using LC-MS/MS. HeLa cells were
labeled with either light or heavy methionine for six genera-
tions. The heavy-labeled cells were treated with 30 mM cLEU
for 6 h and the light and heavy-labeled cells were then mixed
at a ratio of 1:1. Then, ribosomes were purified by two
methods for the maximum coverage (Fig. 6A): by immuno-
precipitation (IP) (method 1) or ultracentrifugation in sucrose
cushion (method 2). In method 1, cells were transfected with
the 3× FLAG-tagged RPL23A protein (FL-RPL23A) expres-
sion vector and then ribosome containing the FL-RPL23A
protein was purified by ani-FLAG IP. For comparison, a
mock purification was also performed in parallel using cells
transfected with the empty vector (Fig. S5, A and B). In
method 2, ribosome was pelleted by passing the cleared lysate
through 1 M sucrose cushion in ultracentrifugation (Fig. S5,
C and D). We noticed that many ribosomal proteins were
purified in both methods (Table S3). By combining the data
obtained from the two methods, we identified 28 methylated
peptides (Table S3; Sheet 3). After calculating the heavy/light
ratio from the relative abundance of methylated peptides,
the values were normalized to those of unmethylated
methionine-containing peptides derived from the same pro-
tein to exclude the possible variability due to the difference in
cell number or protein amount between light-labeled and
heavy-labeled cells. When no unmethylated methionine-
containing peptide was identified in the same protein, the
normalization was done using RPL23A (method 1) or
PABPC1 (method 2) as the standards (see Supplementary
Method for details) (Table S3). By taking average abun-
dance values of peptides purified twice, we finally identified
16 unique peptides (Table S3; Sheet 5). Among the unique
peptides, 12 peptides were derived from proteins involved in
translation, and five of them showed a reduction by 60% or
more in methylation upon MAT2A inhibition by the cLEU
treatment for 6 h (Fig. 6B and Table S3). The relative abun-
dance of methionine-containing peptides used for normali-
zation showed a linear correlation in both methods (Fig. 6, C
and D), indicating that the same amount of proteins were
purified from the control and treatment samples. These re-
sults suggest that MAT2A contribute to dynamic methylation
of a specific set of proteins for translation.

The highest methylation reduction was observed in
K55me2 of eEF1A1 and/or eEF1A2. The chromatogram and
mass spectrum of eEF1A1/2K55me2 light and heavy peptides
are presented in Figure 7A. We further validated the effect of
MAT2A on eEF1A1/2K55me2 by Western blot using a spe-
cific antibody for this methylation. For convenience of
transfection, we selected HEK293T cells for this experiment.
J. Biol. Chem. (2022) 298(7) 102084 7
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mTORC1-independent translation control by MAT2A and SAM
Because of its ubiquitous expression (69), the principal form
of eEF1A in HEK293T cells is eEF1A1. Therefore, we exam-
ined the methylation status of eEF1A1K55me2 in HEK293T
cells upon MAT2A transient overexpression. First, we vali-
dated the specific reactivity of commercially available
DiMethyl-eEF1A-K55 antibody (anti-eEF1AK55me2) by
overexpressing either wildtype FB-eEF1A1 or mutant FB-
eEF1A1K55R (lysine was replaced by arginine) in HEK293T
8 J. Biol. Chem. (2022) 298(7) 102084
cells followed by IP with the FLAG antibody and immuno-
blotting with the anti-eEF1AK55me2 antibody. We observed
that the anti-eEF1AK55me2 antibody detected wildtype FB-
eEF1A1 both in the input (Fig. 7B, lane 2) and IP (Fig. 7B,
lane 5) samples but failed to detect the corresponding signal
of FB-eEF1A1K55R (Fig. 7B, Lanes 3 and 6, respectively),
corroborating that this antibody specifically detects
eEF1A1K55me2. Next, we co-expressed either wildtype FB-
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mTORC1-independent translation control by MAT2A and SAM
eEF1A1 or mutant FB-eEF1A1K55R with MAT2A in
HEK293T cells. As expected, we observed that the expression
of MAT2A increased eEF1A1K55me2 (Fig. 7C, lane 5). This
observation was consistent with the reduction in
eEF1AK55me2 upon MAT2 inhibition observed in the heavy
methyl-SILAC experiments.
Discussion
In this study, we examined the role of MAT2A in protein

synthesis in mammalian cells. We revealed that MAT2A and
SAM are essential to maintain global protein synthesis inde-
pendently of the mTORC1 signaling. In the polysome profiling
experiment, we observed that inhibition of the MAT2A activity
J. Biol. Chem. (2022) 298(7) 102084 9



Figure 7. MAT2A induces methylation of eEF1A1 at lysine 55. A, the chromatogram (upper panels) and mass spectrum (lower panels) of light and heavy
eEF1A1/2K55me2 peptides are presented. The retention time (RT), area (AA), and m/z of this peptide are presented in blue (light peptide) and magenta
(heavy peptide). B, the specific reactivity of the anti-eEF1AK55me2 antibody was determined. The eEF1A1 WT and the methylation-mutant protein were
transiently expressed for 24 h in HEK293T cells, and IP and immunoblotting were done using the indicated antibodies. The magenta arrows indicate ectopic
FB-eEF1A1. C, the eEF1A1 WT and methylation-mutant proteins were co-expressed with MAT2A in HEK293T cells for 24 h, and immunoblotting with the
indicated antibodies was done. The magenta arrows indicate ectopic FB-eEF1A1. This experiment was repeated two times, which resulted in the same
observation.

mTORC1-independent translation control by MAT2A and SAM
impaired the formation of active polysome and altered TE of a
subset of mRNA. To understand the mechanistic aspects, we
studied the MAT2A interactomes by mass spectrometry. We
observed that MAT2A interacts with many rRNA processing
and ribosome biogenesis factors. We revealed that the 18S
rRNA maturation was severely affected by MAT2A depletion
and inhibition. By quantitative mass spectrometry, we showed a
drastic reduction of methylation of translation factors including
10 J. Biol. Chem. (2022) 298(7) 102084
eEF1A1 in MAT2A-inhibited cells. To sum up, MAT2A and
SAM promote translation in mammalian cells by (i) facilitating
rRNA processing, (ii) promoting active polysome formation,
and (iii) regulating methylation of translation factors (Fig. 8).
Importantly, the effect of MAT2A and SAM on translation is
independent of the mTORC1 signaling.

We observed a reduction in protein synthesis not only upon
MAT2A depletion but also by chemical inhibition of MAT2A
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mTORC1-independent translation control by MAT2A and SAM
activity, indicating that MAT2A relies on SAM for promoting
protein synthesis. It has been reported that SAM and its pre-
cursor methionine are necessary for proliferation of cancer
cells (70–72) and stem cells (73–75). Moreover, SAM scarcity
in cancer leads to cell cycle arrest in G1 and G2 phases where
cells synthesize proteins, lipids, and other biomolecules
(76, 77). In addition, cell proliferation requires the synthesis of
a copious amount of protein. Therefore, our data suggest that
MAT2A and SAM contribute to cell proliferation by main-
taining protein synthesis. On the other hand, several studies
have depicted that an excess of exogenous SAM supplemen-
tation can be toxic and suppresses proliferation of cell lines
from various cancers including uterine cervix (78), colon (79),
colorectal (80), and breast (81) by arresting cell cycle in S
phase (80, 82). Therefore, an optimum amount of SAM is
necessary for protein synthesis and cell cycle progression.

In this study, we found that MAT2A regulates translation
independently of the mTORC1 activity. Contrary to our
findings, a previous study showed that the activity of mTORC1
is highly dependent on cellular SAM concentration. It was
reported that when SAM becomes low in HEK293T cells,
SAMTOR inhibits the mTORC1 activity by forming a stable
dimer with GATOR1. Under a sufficient SAM condition, SAM
binds to SAMTOR to disrupt the SAMTOR-GATOR1 com-
plex, thereby activating mTORC1 and translation (33). While
our findings are contradictory to this report, the difference
may be caused by the SAM depletion techniques employed.
They carried out methionine restriction for 2 h in their
experiment. The activation of mTORC1 requires its localiza-
tion on the lysosomal surface, where the activator RHEB
resides, and the localization is stimulated by an amino acid
signaling (28, 83). Therefore, the observation by Gu et al.
might be confounded by a compromised amino acid signaling
rather than solely depending on SAM concentration. Further
studies are required to clarify these possibilities. It should be
noted that serum stimulation increased MAT2A protein
(Fig. 1C). This observation may suggest that mTOR induces
the expression of MAT2A.

Paradoxically to the drastic protein synthesis reduction, TE
of only a small number of transcripts was decreased in
MAT2A-inhibited cells. This observation can be explained by
the fact that MAT2A is important for global translation rather
than that of specific mRNA. Therefore, a small reduction of
TE, which was not considered for calculation in Figure 3C, for
many genes combinedly might lead to the huge protein syn-
thesis reduction.

The MAT2A-interacting proteins included many rRNA and
ribosome biogenesis factors, particularly the components of
the snoRNP complex, which mediates rRNA methylation
(Fig. 4E). We confirmed the interaction of MAT2A with IMP4.
In addition, the 18S rRNA processing was reduced upon
MAT2A depletion (Fig. 5, A and B) or inhibition (Fig. 5, C and
D), whereas rRNA transcription was not affected (Fig. S4B).
The necessity of methylation for rRNA biogenesis (61, 84–86)
suggests that the 18S rRNA defects observed upon MAT2A
depletion or inhibition are explained by impaired methylation.
The interaction of MAT2A with the snoRNP complex may
expand the idea of the local SAM synthesis and consumption
model of chromatin methylation in which SAM is produced on
chromatin for local histone methylation (87, 88). MAT2A may
produce SAM for rRNA methylation along with its processing.
Further studies including rRNA methylation are necessary to
draw an absolute conclusion.

Posttranslational methylation is one of the most common
modifications found in a wide range of proteins. Given that
translation is one of the critical steps for gene expression
control, methylation of ribosomal proteins and translation
factors might be crucial for the translational regulation of
gene expression. By quantitative mass spectrometry, we
revealed that methylation of some translation factors, such as
eEF1A1/2K55me2, PABPC3K104me1, PABPC1LK361me1,
and eEF2K525me3, were reduced by more than 60% upon
MAT2A inhibition (Fig. 6B). We must note that some of
these identifications and quantifications may have been
disturbed by distinct unmethylated peptides derived from
homologous proteins in which amino acid replacements alter
the number of the methyl group, such as the replacement of
Gly by Ala (see Table S3, sheet 3, column AE). We further
validate the effect of MAT2A on eEF1A1K55me2 by using a
specific antibody (Fig. 7, B and C); transient overexpression
MAT2A induced eEF1A1K55me2. These observations sug-
gest that methylations of these proteins are dynamically
altered in response to intracellular SAM concentration.

It has been reported that methylations of some of these
proteins are necessary for translation. For example,
eEF1AK55me2 is required for protein synthesis and tumori-
genesis in lung cancer (51) and cell proliferation in acute
J. Biol. Chem. (2022) 298(7) 102084 11
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myeloid leukemia (89). It is also reported that eEF1AK55me2
has a more specific function in enhancing the translation of
codons for tryptophan and alanine (90). Therefore, MAT2A
may at least partially rely on eEF1AK55me2 to stimulate
protein synthesis. eEF2K509me3 (the corresponding residue in
human is K525) is essential for maintaining translation frame
in yeast (67). Although there is no report of PABPC1L
methylation as far as we know, upregulation of PABPC1L is
associated with proliferation and migration of prostrate and
colorectal cancers (91, 92). Therefore, it would be promising to
investigate the importance of PABPC1LK361me1 in trans-
lation. PABPC3 and PABPC4 are known to be methylated at
several lysine and arginine residues (93, 94). However, the
biological significance of these methylations is still unknown.
Since PABPCs have translation-stimulating capabilities
(95–97), the biological significance of their methylations would
be promising to be explored in future.

In this study, we focused on methylation of translation-
related proteins. tRNA is also highly modified by methyl-
ation at different positions, and some of them have already
been proven important for various steps of translation
(98–100). Therefore, in future, it will be propitious to inves-
tigate whether and how MAT2A and SAM contribute to
tRNA-modification.

Due to the complex nature of the mTOR signaling, the
cancer chemotherapy targeting the mTOR signaling pathways
for translation control is often compromised by different
mechanisms including mutations of inhibitor binding sites
(101, 102), activation of costimulatory molecules (103),
induced expression of growth factor receptors (104), and
reduced expression of inhibitory molecules (105). Further-
more, the mTOR inhibitors compromise cancer therapy due to
their potent immunosuppressive properties (106). Under these
circumstances, a therapy targeting MAT2A could be an
alternative to suppress the translation for cancer therapy.

Experimental procedures

Cell culture

Hepa1 and HeLa cells were cultured in Dulbecco’s Modified
Eagle’s Medium (DMEM) containing 4.5 g/l glucose (D5796,
DMEM-high glucose, Sigma-Aldrich) supplemented with 10%
fetal bovine serum (FBS) (172012, Sigma-Aldrich) and com-
bination of 100 U/ml penicillin and 100 μg/ml streptomycin
(15140-122, penicillin-streptomycin, Thermo Fisher Scienti-
fic). In polysome analysis, HeLa cells were cultured in DMEM
media containing 4.5 g/l glucose (08458-16, Nacalai Tesque)
supplemented with 10% FBS (26140079, Thermo Fisher Sci-
entific). HEK293T cells were cultured in DMEM containing
1.0 g/l glucose (D6046, Sigma Aldrich) supplemented with 10%
FBS (172012, Sigma Aldrich).

Plasmids

The pEF1α-FLAG-Biotag empty vector (FB-EV), pEF1α-
FLAG-Biotag-MAT2A (FB-MAT2A), and pEF1α-FLAG-Bio-
tag-BirA (FB-BirA) vectors were described in previous studies
(87, 107). The pcDNA3.1(+)-RPS2-TEV-3×-FLAG (FL-RPS2)
12 J. Biol. Chem. (2022) 298(7) 102084
and pcDNA3.1(+)-RPL23A-TEV-3×-FLAG (FL-RPL23A) vec-
tors were constructed in this study. The human RPS2
(NM_002952.3) and RPL23A (NM_000984.5) cDNAs were
amplified from HEK293T cells using a forward primer
including a BamH1 restriction site and a reverse primer
including a TEV protease site followed by the 3× FLAG
sequence and an Xho1 restriction site. The amplified cDNAs
were then introduced into the pcDNA 3.1 (+) vector at the
BamH1 and Xho1 sites. Therefore, the resulting plasmids
encode C-terminal 3× FLAG-tagged RPS2 and 3× FLAG-
tagged RPL23A. The MSCV-FB-eEF1A1 (FB-eEF1A1) and
MSCV-FB-eEF1A1K55R mutant (FB-eEF1A1K55R) plasmids
were constructed in this study. Human eEF1A1 cDNA
(NM_001402.5) was PCR-amplified using cDNA from the
ASPC1 cell line and was inserted into the MSCV vector using
its BamH1 restriction site. The MSCV-FB-eEF1A1K55R
mutant vector was then constructed by introducing the point
mutation to the MSCV-FB-eEF1A1 plasmid. To construct the
pcDNA-IMP4-His (His-IMP4) plasmid, human IMP4 cDNA
was PCR-amplified from the human brain cDNA library
(Human Brain, Hypothalamus Marathon-Ready cDNA, No.
639329, Takara Bio). The amplified cDNA was then inserted
into the HindIII and SacII sites of the pcDNA 3.1/myc-His B
vector (V800-20; Thermofisher Scientific).
Western blot analysis

Western blot analysis was performed as described in pre-
vious studies with modifications (78, 87). Briefly, cells were
lysed by 1× SDS sample buffer (62.5 mM Tris-HCl pH 6.8, 1%
SDS, 10% glycerol, 1% 2-mercaptoethanol and 0.02% bromo-
phenol blue) containing protease inhibitors (0469315900,
cOmplete Mini EDTA-free Protease Inhibitor Cocktail Tab-
lets, Roche) or by radioimmunoprecipitation assay buffer
(50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 1%
NP-40, 0.5% Na-deoxycholate, 0.1% SDS and cOmplete pro-
tease inhibitors). For detection of phosphorylated proteins, the
cell lysis buffer additionally contained a phosphatase inhibitor
(04906837001, PhosSTOP, Roche). Protein amount was
quantified by either a protein assay kit (22660, Pierce 660 nm
protein assay reagent, Thermo Fisher Scientific) or SDS-PAGE
followed by CBB (50% methanol, 10% acetic acid and 0.1%
R-250 or G-250) staining and quantification of stain density
with an ImageJ software (version 1.53i). The extracted protein
was denatured by heating at 95 �C for 5 min in the presence of
the SDS-PAGE sample buffer. The protein was separated by
SDS-PAGE in an 11% polyacrylamide gel (15% for SUnSET
and ribosomal proteins). The separated proteins were then
transferred to 0.45-μm PVDF membrane (IPVH00010,
Immobilon-P Transfer Membrane, Merck Millipore). After
transfer, the PVDF membranes were blocked in 3 to 5% skim
milk in TBS-T (50 mM Tris-HCl pH 7.5, 150 mM NaCl and
0.05% Tween 20) before incubation with antibodies. When
phosphorylated proteins were examined, antibody reactions
were done in TBS-T containing 3% BSA. The imaging was
done by a ChemiDoc MP imaging system (Bio-Rad Labora-
tories) using Clarity Western ECL Substrate (1705060, Bio-Rad
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Laboratories). The information on antibodies is provided in
the “Supplementary Method” section.

Translation assay

The translation rate was examined by SUnSET (52). Cells
were grown to 70 to 80% confluency and pulse-labeled with
20 mg/ml puromycin (P8833, Puromycin dihydrochloride,
Sigma-Aldrich) for 30 min at 37 �C in a cell culture incubator.
In serum stimulation, cells were grown in serum-free DMEM
containing 4.5 g/l glucose (D5796, Sigma-Aldrich) for a period
of 24 h. Then, cells were returned into DMEM supplemented
with 10% FBS for 1 h or 3 h before pulse labeling with puro-
mycin. Cells were lysed in radioimmunoprecipitation assay
buffer supplemented with the protease inhibitors. Around 1 to
1.5 μg of total clarified lysate protein was loaded in a lane for
SDS-PAGE and subsequent Western blotting detection was
done by using an antipuromycin antibody.

Polysome analysis

Approximately 5 × 106 cells were seeded in 25 ml of media
in 15-cm cell culture dishes and were grown for 18 h. The
cells in the treatment group were then treated with 30 mM
cLEU (A48105-10G, Sigma-Aldrich) for 6 h, and the cells
were harvested 24 h after the seeding. The polysome was
stabilized by treating with 100 μg/ml CHX (06741–04,
Nacalai Tesque) for 10 min. The harvested cells were lysed in
550 μl of hypotonic lysis buffer (10 mM Hepes-KOH pH 7.9,
1.5 mM MgCl2, 10 mM KCl, 0.5 mM DTT, 1% Triton X-100,
100 μg/ml CHX, 40 U/ml RNAsin, and cOmplete protease
inhibitor). The lysate was cleared by centrifugation at 15,000g
for 10 min. A total of 500 μl of lysate containing around
150 μg of total RNA was layered on 10 to 50% sucrose
gradient in polysome buffer (20 mM Hepes-KOH pH 7.6,
5 mM MgCl2, 100 mM KCl, 1 mM DTT, and 100 μg/ml
CHX) and was centrifuged at 274,000g for 1.5 h at 4 �C
(40,000 rpm using an SW41Ti rotor, 331362, Beckman
Coulter). A Piston Gradient Fractionator (Biocomb) equipped
with a single path UV-1 optical unit (Biomini UV-monitor,
ATTO) and a chart recorder (Digital mini recorder, ATTO)
was used for sucrose fraction collection and polysome profile
generation as previously described (108).

RNA sequencing

The library was prepared using an MGIEasy RNA Direc-
tional Library Prep Set (MGI Tech Co, Ltd) following the
manufacturer’s manual. To examine the prepared library
quality, the circularized DNA was prepared using an MGIEasy
circularization Kit (MGI Tech Co, Ltd) with the manufac-
turer’s guideline. After making DBA nanoball by a DNBSEQ-
G400RS High-throughput Sequencing Kit (MGI Tech Co,
Ltd), the sequencing was performed using DNBSEQ-G400.
The differential gene expression analysis was performed for
transcripts aligned to more than ten reads using estimateSi-
zeFactors function, estimateDispersions function, and nbi-
nomWaldTest function in R package DESeq2.
Purification of FB-MAT2A and LC-MS/MS analysis

Two million stable expression cells were seeded in four 10-
cm dishes 24 h before the cell harvest. The harvested cells
were lysed in 1 ml of IP buffer (10 mM Tris-HCL pH 7.4,
150 mM NaCl, 1 mM EDTA, 0.3% NP-40, 2 mM DDT,
cOmplete protease inhibitor, and PhosSTOP phosphatase
inhibitor). The clarified supernatant was used for affinity
purification with streptavidin-conjugated magnetic beads
(Dynabeads M-280 Streptavidin, Thermo Fisher Scientific)
(78, 107). Briefly, the cleared lysate and 20 μl of Dynabeads
slurry were incubated with an end-to-end rotation at 4 �C for
2 h. The protein-bound beads were washed, and the proteins
were eluted in the presence of biotin at 70 �C for 15 min. The
eluted protein was processed for mass spectrometry accord-
ing to the previously described protocol (109, 110). Briefly,
the purified proteins were separated by SDS-PAGE ussing a 5
to 20% gradient gel (HON-052013; Oriental Instruments Co,
Ltd) and were stained with CBB for visualization. Every lane
was divided into small gel pieces and the pieces were treated
with 30% acetonitrile (ACN) for destaining and then with 50%
and 100% ACN for dehydration. The samples were treated
with DTT and then with acrylamide for reduction and
alkylation of cysteine side chains. The samples were digested
with 10 to 30 ng of trypsin (V5280, Trypsin Gold, Promega) in
digestion buffer (50 mM ammonium bicarbonate and 10%
ACN) overnight at 37 �C. The digested peptides were eluted
in a solution containing 75% ACN and 1% formic acid solu-
tion. The eluates were then concentrated in SpeedVac and
were analyzed in an Orbitrap Fusion mass spectrometer
connected with an Easy-nLC 1000 HPLC (Thermo Fisher
Scientific). The obtained raw MS/MS data were then con-
verted to mgf files using a Proteome discoverer software
(version 1.3.0.339, Thermo Fisher Scientific). The converted
files were submitted to the database search for peptide
identification using a Mascot search engine (Matrix Science)
considering propionamide (Cys) as a fixed modification and
acetyl (Protein N-term) and oxidation (Met) as variable
modifications. The precursor ion and MS/MS tolerances were
set to 5 ppm and 0.5 Da, respectively. A maximum of three
miscleavage was allowed without considering nonspecific
cleavage. The human proteins in Swissprot (Jan 2018) and a
homemade contaminant protein list were searched. The
number of proteins included in the searched database were
20,560 in total. The threshold of Mascot expectation value for
significant peptide-spectral matches were set to 0.05. The
false discovery rates estimated by Mascot decoy search were
reported as follows: 162 PSM in decoy database versus 6262 in
real database (2.63%) for Control IP and 163 versus 7169
(2.27%) for FLAG-Bio-MAT2A IP. The result from a single
experiment is shown.

Quantification of rRNA

Ribosomal RNA was quantified by a 2100 Bioanalyzer In-
strument (Agilent) using an Agilent RNA 6000 Pico kit (5067-
1513, Agilent) following the manufacturer’s instruction.
J. Biol. Chem. (2022) 298(7) 102084 13
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Northern blotting

Northern blotting of rRNA precursors was performed ac-
cording to a previously described protocol (111). Briefly, total
RNA was isolated from HeLa cells treated with either cLEU or
none by using an RNeasy Plus Mini kit (74134, Qiagen)
following the protocol supplied by the manufacturer. Four
micrograms of the total RNA were separated by electropho-
resis using a 1.2% formaldehyde-agarose denaturing gel in the
presence of 1× TT (30 mM Tricine and 30 mM triethanol-
amine) at 200 V for 120 min. The separated RNA was then
transferred to Hybond-N+ membrane (RPN303B, GE
Healthcare) by a capillary method in the presence of 20× SSC
(3 M NaCl and 300 mM trisodium citrate dihydrate) for 18 h.
The RNA was then UV-crosslinked at 120 mJ/cm2 by using a
CL-1000 UV-crosslinker device. The membranes were incu-
bated in the hybridization buffer containing the DIG-labeled
hybridization probes at 50 �C for 20 h. The membrane was
then washed once in 2× SSC containing 0.1% SDS for 15 min
at 50 �C, then twice in 0.1× SSC containing 0.1% SDS for two
times at the same temperature, and finally in 1× MA buffer
(100 mM maleic acid and 150 mM NaCl, pH 7.0) for 10 min at
room temperature. After being blocked by a blocking reagent
(11096176001, Roche) for 30 min, the membrane was incu-
bated with anti-digoxigenin–AP, Fab fragments (11093274910,
Roche) in the blocking buffer for 1 h. After that, the membrane
was washed three times in 1× MA buffer containing 0.3%
Tween-20 and then was equilibrated in buffer-A (100 mM
Tris-HCl and 100 mM NaCl, pH 9.5). RNA was detected using
CDP-star (11759051001, Roche) and a LAS-4000 mini device.
The 50 DIG-labeled probes for the detection of the precursor
rRNAs are follows:

ITS1: 50-CCTCGCCCTCCGGGCTCCGGGCTCCGTTAA
TGATC-30

ITS2: 50-CTGCGAGGGAACCCCCAGCCGCGCA-30

The mature human 18S and 28S rRNAs were detected by
DIG-labeled probes that were synthesized by PCR DIG Probe
Synthesis Kit (11636090910, Roche) using the following
primers.

18S rRNA: 50-ATCAAGAACGAAAGTCGGAGGTTCG-30

and 50-GTGCAGCCCCGGACATCTAAG-30.
28S rRNA: 50-GCCGACTTAGAACTGGTGCGG-30 and

50-CTCACCGGGTCAGTGAAAAAACGA-30.
Heavy-methyl SILAC experiment

The heavy methyl-SILAC experiment was conducted based
on the principles and procedure described in earlier researches
(68, 112, 113). The SILAC labeling media were prepared by
reconstituting commercially available DMEM high-glucose
media depleted for glutamine, methionine, and cysteine
(21013024; DMEM high glucose, no glutamine, no methio-
nine, no cysteine cell culture media, Thermo Fisher scientific).
For reconstitution, we added 4 mM glutamine (25030-081,
Thermo Fisher scientific), 200 μM cysteine (1001527621,
L-cysteine dihydrochloride, Sigma-Aldrich) and either 200 μM
normal methionine (1001818815; L-Methionine, Sigma-
Aldrich) for the light medium or 200 μM heavy methionine
14 J. Biol. Chem. (2022) 298(7) 102084
(CDLM9289025, L-methionine, Methyl-13C 99%, Methyl-D3
98%, Cambridge Isotope Laboratories) for the heavy me-
dium. After reconstitution, we added 10% dialyzed FBS (F0392,
Sigma-Aldrich) and a combination of 100 U/ml penicillin and
100 μg/ml streptomycin (15140-122, Penicillin-Streptomycin,
Thermo Fisher scientific). HeLa cells were cultured in either
light or heavy medium for at least six generations. The heavy-
labeled cells were treated with 30 mM cLEU for 6 h before
harvest. The ribosome was purified as follows:

Method 1 (purification by IP)

Light- and heavy-labeled cells were transfected with 15 μg of
either the FL-EV or FL-RPL23A plasmid and were grown for
24 h before harvest. After cell harvest by trypsinization, an
equal number of light- and heavy-labeled cells were mixed and
were lysed in 700 μl of lysis buffer (10 mM Hepes-KOH pH
7.4, 100 mM NaCl, 10 mM MgCl2, 10% glycerol, 2 mM DTT,
1 mM PMSF, 2% NP-40, and cOmplete protease inhibitor).
The cleared lysate was then used for ribosome purification by
an anti-DDDDK antibody bound to magnetic beads (M185-
11R, anti-DDDDK-tag mAb-magnetic beads, MBL) at 4 �C for
2 h. The ribosomes were then heat-eluted and were denatured
in the presence of SDS-sample buffer.

Method 2 (purification by pelleting on sucrose cushion)

5 × 106 of light- and heavy-labeled cells were mixed in 1:1
ratio and were lysed in 350 μl of lysis buffer (20 mM Tris-HCL
pH 7.5, 150 mM NaCl, 5 mM MgCl, 1 mM DTT, 1% Triton-
X100, cOmplete protease inhibitor, and100 μg/ml CHX). The
lysate was clarified by centrifugation at 2000g for 20 min at 4
�C. The cleared lysate was then layered on 900 μl of 1 M su-
crose cushion in a 13 × 56 mm 3.2-ml capacity thick-wall
polycarbonate ultracentrifuge tube (362305; Beckman
Coulter). The tube was then centrifuged in a TLA-110 fixed
angle rotor (366735, Beckman Coulter) at 543,000g
(100,000 rpm) for 1 h at 4 �C in an Optima MAX-XP Benchtop
Ultracentrifuge (Beckman Coulter). The resulting ribosome
pellet was washed with ice-cold PBS, was dissolved in SDS-
sample buffer and was denatured at 95 �C for 5 min.

After purification of ribosome by either method, the LC-
MS/MS sample preparation and analysis were performed as
described in “Purification of FB-MAT2A and LC-MS/MS
analysis” except that methylation and demethylation at Lys
and Arg and trimethylation at Lys were also included in the
variable modifications. The human proteins in Swissprot (Nov
2020) and a homemade contaminant protein list were
searched. The number of proteins included in the searched
database was 20,692 in total. The threshold of Mascot expec-
tation value for significant peptide-spectral matches was set to
0.05. The false discovery rates estimated by Mascot decoy
search were reported as follows: 118 PSM in decoy database
versus 12,888 in real database (0.92%) for ribosome isolation by
ultracentrifugation and 65 versus 5025 (1.29%) for FLAG-
RPL23a IP. The result from a single experiment is shown.
Details in the methylated peptides identification procedure can
be found in “Supplementary Method” section.
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Statistical analysis

Welch two-sample t test was performed using an R program
(Version 4.0.2) for comparison ofMat2amRNA (Fig. S1A) and
rRNA ratio (Fig. 5B). The relative intensity values were
analyzed by one-way analysis of variance assuming equal
variance followed by Tukey’s honest significance test for the
comparison of multiple means (Fig. 1B). Two sample unpaired
t test was performed to compare the normalized intensities of
puromycin-labeled peptides (Fig. 1C). GO analysis of proteins
or genes were performed by using package ‘Go.db” with
“enrichGo” function in R. Pearson correlation analysis was
performed to compare the correlation between the abundance
of light and heavy unmethylated methionine-containing pep-
tides (Fig. 6, C and D) using package “ggpmic” with “stat(e-
q.label)” function in R.
Data availability

The raw data files of mass spectrometry are available in the
MassIVE public database (https://massive.ucsd.edu/
ProteoSAFe/static/massive.jsp, Dataset ID: MSV000089292
and MSV000089296), and the raw data for mRNA sequencing
are available in GEO with ID: GSE201299.

Supporting information—This article contains supporting informa-
tion (59, 87, 88, 114).
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