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By converting extracellular adenosine triphosphate to adenosine, CD39 is involved in adenosine metabolism. The
extracellular adenosine plays a critical role in the immune suppression of the tumor microenvironment. Therefore,
the inhibition of CD39 activity by monoclonal antibodies (mAbs) is thought to be one of the important strategies
for tumor therapy. In this study, we developed novel mAbs for mouse CD39 (mCD39) using the Cell-Based
Immunization and Screening (CBIS) method. One of the established anti-mCD39 mAbs, C3;oMab-2 (rat IgG,,,
lambda), reacted with mCD39-overexpressed Chinese hamster ovary-K1 (CHO/mCD39) and an endogenously
mCD39-expressed cell line (SN36) by flow cytometry. The kinetic analysis using flow cytometry indicated that
the dissociation constant (Kp) values of C3gMab-2 for CHO/mCD39 and SN36 were 5.5 X 10°Mand4.9x10° M,
respectively. These results indicated that C3gMab-2 is useful for the detection of mCD39 in flow cytometry.
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Introduction

A DENOSINE-MEDIATED IMMUNOSUPPRESSION has been
reported to be critical for tumor immune evasion. Various
cancers showed the elevated expression of CD39 (ectonu-
cleoside triphosphate diphosphohydrolase 1; encoded by
ENTPDI), which hydrolyzes extracellular adenosine tripho-
sphate (eATP) to adenosine diphosphate and adenosine
monophosphate (AMP), promotes the local accumulation of
adenosine surrounding tumors." The adenosine-induced
immunosuppression is mediated via four G protein-coupled
type 1 purinergic (P1) receptors, A, Asa, Azp, and Ajz ex-
pressed on immune cells.”? The A, and A,p are Gg-coupled
receptors and trigger intracellular cAMP accumulation
among the four P1 receptors. The cAMP signaling medi-
ates immunosuppression by activation of effectors including
protein kinase A.*

The immunosuppressive effects of the A, receptor in vivo
were first reported by Sitkovsky’s group.* Inflammatory
stimuli that caused minimal tissue damage in wild-type mice
were sufficient to induce extensive tissue damage, higher
levels of proinflammatory cytokines, and individual death in
mice lacking the A,4 receptor.* They also showed genetic
evidence of the importance of the A, receptor in tumor
immunity.’ These findings indicated that the critical roles in

CD39-adenosine—A,, receptor axis in antitumor immunity
and several landmark studies have developed multiple strat-
egies targeting adenosine metabolism.®’

The development of anti-CD39 monoclonal antibodies
(mAbs) is one of the strategies to modulate adenosine
metabolism. A preclinical study revealed that an anti-mouse
CD39 (mCD39) mAb (clone B66), which inhibits mCD39
activity in vitro, exhibited the antitumor effect in syngeneic
models by the monotherapy and combination therapy with
the programmed cell death-1 (PD-1) blockade.® They also
showed that B66 triggers an eATP-P2X7-inflammasome—
interleukin-18 (IL-18) pathway that promotes tumor immu-
nity, and overcomes the resistance of PD-1 blockade.® The
anti-human CD39 mAbs, such as TTX-030, IPH5201, and
SRF-617, were designed to suppress the enzymatic activity of
CD39 with minimizing Fc receptor-mediated engagement to
avoid the side effects.®” These mAbs have entered the clin-
ical trials for solid tumors with a combination of immune
checkpoint inhibitors or chemotherapeutic agents.®

We have established many mAbs against membrane pro-
teins, such as CCR3,'° CCR8,'' CCRY,"* CD19,"” €D20,'*"
CD44,'*'7 D133, EpCAM,"?° HER2,”! HER3,*
KLRG1,% programmed cell death ligand 1 (PD-L1),** podo-
planin (PDPN),>>7¢ TIGIT,*” and TROP2%*+° using the
Cell-Based Immunization and Screening (CBIS) method.
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The CBIS method includes the immunization of antigen-
overexpressed cells and high-throughput hybridoma screen-
ing using flow cytometry. In this study, a novel anti-mCD39
mADb was developed by the CBIS method.

Materials and Methods
Cell lines

Mouse leukemia SN36 was obtained from the Cell
Resource Center for Biomedical Research Institute of
Development, Aging and Cancer Tohoku University
(Miyagi, Japan). LN229, Chinese hamster ovary (CHO)-K1,
and P3X63Ag8U.1 (P3U1) were obtained from the American
Type Culture Collection (Manassas, VA, USA).

The synthesized DNA (Eurofins Genomics KK) encoding
mCD39 (Accession No.: NM_ 009848) was subsequently
subcloned into a pCAGzeo_nPA-cRAPMAP vector, which
is derived from a pCAGzeo vector (FUJIFILM Wako
Pure Chemical Corporation, Osaka, Japan), N-terminal PA
tag,**** and C-terminal RAP tag*** + MAP tag.*>*® The
amino acid sequences of the tag system were as follows:
PA tag, 12 amino acids (GVAMPGAEDDVYV); RAP tag,
12 amino acids (DMVNPGLEDRIE); and MAP tag, 12 amino
acids (GDGMVPPGIEDK). The PA tag can be detected by an
anti-human PDPN mAb (clone NZ-1). 0-4247-59 The mCD39
plasmid was transfected into CHO-K1 and LN229 cells, using
a Neon transfection system (Thermo Fisher Scientific, Inc.,
Waltham, MA, USA). Stable transfectants were established
through cell sorting using a cell sorter (SH800; Sony Corp.,
Tokyo, Japan), after which cultivation in a medium,
containing 0.5 mg/mL of Zeocin (InvivoGen, San Diego,
CA, USA) was performed.

SN36, CHO-K1, mCD39-overexpressed CHO-KI
(CHO/mCD39), and P3U1 were cultured in a Roswell Park
Memorial Institute (RPMI)-1640 medium (Nacalai Tesque,
Inc., Kyoto, Japan), with 10% heat-inactivated fetal bovine
serum (FBS; Thermo Fisher Scientific, Inc.), 100 U/mL of
penicillin, 100 ug/mL of streptomycin, and 0.25 ug/mL of
amphotericin B (Nacalai Tesque, Inc.). LN229 and mCD39-
overexpressed LN229 (LN229/mCD39) were cultured in
Dulbecco’s Modified Eagle Medium (DMEM) (Nacalai
Tesque, Inc.), supplemented with 10% FBS, 100 U/mL of
penicillin, 100 ug/mL streptomycin, and 0.25 pg/mL ampho-
tericin B. All cells were grown in a humidified incubator at
37°C, at an atmosphere of 5% CO, and 95% air.

Production of hybridomas

A 5-week-old Sprague-Dawley rat was purchased from
CLEA Japan (Tokyo, Japan). The animal was housed under
specific pathogen-free conditions. All animal experiments
were performed according to the relevant guidelines and
regulations to minimize animal suffering and distress in the
laboratory. The Animal Care and Use Committee of Tohoku
University (Permit No.: 2019NiA-001) approved animal
experiments. The rat was monitored daily for health during
the complete 4-week duration of the experiment. A reduction
of more than 25% of the total body weight was defined as a
humane endpoint. During the sacrifice, the rat was euthanized
through cervical dislocation, after which death was verified
through respiratory and cardiac arrest.
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To develop mAbs against mCD39, we intraperitoneally
immunized one rat with LN229/mCD39 (1x 10" cells) plus
Imject Alum (Thermo Fisher Scientific, Inc.). The proce-
dure included three additional injections every week (1 X
10° cells/rat), which were followed by a final booster
intraperitoneal injection (1x10° cells/rat), 2 days before
harvesting spleen cells. The harvested spleen cells were
subsequently fused with P3U1 cells, using PEG1500 (Roche
Diagnostics, Indianapolis, IN, USA), after which hybrid-
omas were grown in the RPMI-1640 medium with 10%
FBS, 100 U/mL of penicillin, 100 ug/mL of streptomycin,
and 0.25 pug/mL of amphotericin B. For the hybridoma
selection, hypoxanthine, aminopterin, and thymidine (HAT;
Thermo Fisher Scientific, Inc.) were added into the medium.
The supernatants were subsequently screened using flow
cytometry using CHO/mCD39, CHO-K1, and SN36.

Antibodies

An anti-mCD39 mAb (clone 5F2, mouse IgG,, kappa) was
purchased from BioLegend (San Diego, CA, USA). Alexa
Fluor 488-conjugated anti-rat IgG and Alexa Fluor 488-
conjugated anti-mouse IgG secondary Abs were purchased
from Cell Signaling Technology, Inc. (Danvers, MA, USA).

The cultured supernatant of C39Mab-2-producing hybrid-
omas was collected through centrifugation at 2330x g for
5 min, followed by filtration using Steritop (0.22 pm; Merck
KGaA, Darmstadt, Germany). The filtered supernatants were
subsequently applied to 1 mL of Protein G Sepharose 4 Fast
Flow (GE Healthcare, Chicago, IL, USA). After washing
with phosphate-buffered saline (PBS), bound antibodies were
eluted with an IgG elution buffer (Thermo Fisher Scientific,
Inc.), followed by immediate neutralization of eluates, using
1 M tris—HCI (pH 8.0). Finally, the eluates were concentrated,
after which the elution buffer was replaced with PBS using
Amicon Ultra (Merck KGaA).

Flow cytometric analysis

CHO-K1 and CHO/mCD39 were harvested after a brief
exposure to 0.25% trypsin and 1 mM ethylenediaminete-
traacetic acid (EDTA; Nacalai Tesque, Inc.). The cells were
subsequently washed with 0.1% bovine serum albumin in
PBS and treated with 0.001, 0.01, 0.1, and 1 ug/mL of pri-
mary mAbs for 30 min at 4°C. The cells were treated with
Alexa Fluor 488-conjugated anti-rat IgG or Alexa Fluor 488-
conjugated anti-mouse IgG (1:2000). The fluorescence data
were collected using the SA3800 Cell Analyzer (Sony Corp.).

Determination of dissociation constant (Kp)
by flow cytometry

CHO/mCD39 and SN36 were suspended in 100 uL serially
diluted and C39Mab-2 for 30 min at 4°C. The cells were
treated with 50 uL. of Alexa Fluor 488-conjugated anti-rat
IgG (1:200). The fluorescence data were collected, using the
SA3800 Cell Analyzer. The K, was subsequently calculated
by fitting saturation binding curves to the built-in; one-site
binding models in GraphPad PRISM 8 (GraphPad Software,
Inc., La Jolla, CA, USA).

Results and Discussion

We conducted flow cytometry using two anti-mCD39
mAbs: C3oMab-2 and 5F2 against CHO/mCD39 and SN36
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cell lines. C3oMab-2 recognized CHO/mCD39 cells dose-
dependently at 1, 0.1, 0.01, and 0.001 pg/mL (Fig. 1A). In
contrast, SF2 needed more than 0.01 pg/mL for the detection
of CHO/mCD39 (Fig. 1A). Parental CHO-K1 cells were not
recognized even at 1 pg/mL of all mAbs (Fig. 1B).

Furthermore, we investigated the reactivity of CzoMab-2
against an endogenously mCD39-expressed cell line, SN36.
C39Mab-2 reacted with SN36 at more than 0.1 ug/mL
(Fig. 1C). In contrast, SF2 could react with SN36 at 1 pg/mL,
but not at 0.1 pg/mL. These results suggested that C3oMab-2
specifically recognizes mCD39 and is also useful for det-
ecting endogenous mCD39 by flow cytometry.
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To determine the Kp of C3gMab-2 with mCD39-expressing
cells, we conducted kinetic analysis by flow cytometry using
CHO/mCD39 and SN36 cells. The geometric mean of the
fluorescence intensity was plotted versus the concentration of
CzoMab-2. The Kp value of CzoMab-2 for CHO/mCD39
was determined as 5.5x10° M (Fig. 2A). Furthermore, the
Kp value of C3oMab-2 for SN36 was determined as 4.9 x 10 M
(Fig. 2B). These results indicate that C3gMab-2 possess the high
affinity for both CHO/mCD39 and SN36 cells.

Recently, Zhang er al.®® demonstrated the application of
an anti-mCD39 mADb for tumor therapy by the depletion of
immunosuppressive cells through enhanced Fcy receptor—
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FIG. 1.

Fluorescence intensity

Flow cytometry using anti-mCD39 mAbs. CHO/mCD39 (A), CHO-K1 (B), and SN36 (C) cells were treated with

0.001-1 pg/mL of C39Mab-2 and 5F2, followed by treatment with Alexa Fluor 488-conjugated anti-rat IgG (for C39Mab-2)
or Alexa Fluor 488-conjugated anti-mouse IgG (for SF2). The filled gray represents the negative control. CHO, Chinese
hamster ovary; mAbs, monoclonal antibodies; mCD39, mouse CD39.
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FIG. 2. The determination of the binding affinity of
CsoMab-2. CHO/mCD39 (A) and SN36 (B) cells were
suspended in 100 pL serially diluted C3oMab-2 at the indi-
cated concentrations. The cells were treated with Alexa
Fluor 488-conjugated anti-rat IgG. The fluorescence data
were subsequently collected using the SA3800 Cell Analy-
zer, following the calculation of the dissociation constant
(Kp) by GraphPad PRISM 8.

mediated antibody-dependent cellular cytotoxicity (ADCC).
They found that mCD39 expression on vascular endothe-
lial cells and tumor-infiltrating immune cells was markedly
higher than that in normal tissues. They used a non-neutralizing
anti-mCD39 mAb (clone SF2, mouse IgG;) and screened an
isotype-switched hybridoma subline of the IgG,. isotype,
which has more potent ADCC activities. To enhance the
effector functions, the fucosyltransferase 8 (Fut8) gene was
deleted in the 5F2 hybridomas to produce the defucosylated
antibody. They showed that the defucosylated anti-mCD39
IgG,. exerted the potent antitumor effect against mouse mel-
anoma and colorectal tumor models through the depletion of
regulatory/exhausted T cells, tumor-associated macrophages,
and tumor vasculature with high mCD39 expression.

We previously produced recombinant antibodies, which
were converted into mouse IgG,, isotype from mouse
IgG, ®'~® Furthermore, we produced defucosylated IgG»,
mAbs using Fut8-deficient CHO-K1 cells to potentiate
the ADCC activity.®'®® The defucosylated mAbs showed
potent antitumor activity in mouse xenograft models.®'~®®
Therefore, a isotype-switched and defucosylated version of
C39Mab-2 could be used to evaluate the antitumor activity
in vivo.
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