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The highly O-glycosylated membrane glycoprotein podoplanin (PDPN) is frequently overexpressed in several
malignant cancers, such as oral cancer, lung cancer, germinal neoplasia, mesothelioma, and brain tumor. The
expression of PDPN is strongly associated with cancer progression and poor prognosis. PDPN possesses three
tandem repeats of platelet aggregation-stimulating (PLAG) domains (PLAG1, PLAG2, and PLAG3) and PLAG-
like domain (PLD), and binds to C-type lectin-like receptor 2 (CLEC-2) on platelets, followed by PDPN-mediated
platelet aggregation. We have previously established a novel anti-Tasmanian devil PDPN (tasPDPN) monoclonal
antibody (mAb), PMab-233, which specifically detects tasPDPN using flow cytometry, Western blot, and im-
munohistochemical analyses. However, the specific binding epitope of tasPDPN for PMab-233 remains to be
clarified. Herein, a series of deletion or point mutants of tasPDPN were utilized for investigating the binding
epitopes of PMab-233 using flow cytometry. The findings of this study demonstrated that Asp30, Thr33, and Thr34
of tasPDPN, which are located in PLAG1, are responsible for the binding of PMab-233 to tasPDPN.
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Introduction

P odoplanin (PDPN)/Aggrus/T1a is a highly O-
glycosylated transmembrane glycoprotein, and is ex-

tensively distributed in normal tissues, such as podocytes of
the kidneys, type I alveolar cells of the lungs, lymphatic
endothelial cells of all organs, myofibroblasts, mesothelial
cells, and central nervous system.(1–4) Many physiological
functions of PDPN have been reported to play crucial roles in
blood/lymphatic vessel separation,(5,6) embryonic cardiac
development,(7,8) and high endothelial venule integrity.(9)

The PDPN overexpression has also been observed in several
malignant tumors, such as brain tumors,(10,11) oral cancers,(12)

lung cancers,(13) melanomas,(14) mesotheliomas,(15) breast can-
cers,(16,17) and osteosarcomas.(18–20) Clinical data demonstrated
that PDPN expression is associated with poor prognosis and
tumor malignancy in lung carcinomas, oral squamous cell car-
cinomas, and breast cancers.(8,21–24) PDPN facilitates hema-
togenous metastasis by eliciting tumor cell-induced platelet
aggregation response through its interaction with platelet C-type
lectin-like receptor 2 (CLEC-2).(25–28) These pieces of evidence
imply the importance of developing anti-PDPN monoclonal
antibodies (mAbs) for cancer therapeutic treatment.

We have recently established a novel PMab-233 (IgG1,
kappa), which specifically detects Tasmanian devil PDPN
(tasPDPN) using Cell-Based Immunization and Screening

(CBIS) method.(29) PMab-233 detected Chinese hamster
ovary (CHO)/tasPDPN cells by flow cytometry and recog-
nized tasPDPN protein by Western blotting. Furthermore,
PMab-233 strongly detected CHO/tasPDPN cells by immu-
nohistochemistry. These findings suggest that PMab-233
may be useful as a lymphatic endothelial cell marker of the
Tasmanian devil. However, the specific binding region of
tasPDPN for PMab-233 remains to be elucidated. In this
study, we investigated the binding epitopes of PMab-233 by
analyzing a series of deletion or point mutants of tasPDPN
using flow cytometry.

Materials and Methods

Cell lines

CHO-K1 was purchased from the American Type Culture
Collection (ATCC, Manassas, VA). The tasPDPN mutation
plasmids containing PA16 tag were transfected into CHO-K1
cells using Lipofectamine LTX (Thermo Fisher Scientific,
Inc., Waltham, MA). Transiently transfected cells with
deletion/point mutants were cultured in RPMI 1640 medium
(Nacalai Tesque, Inc., Kyoto, Japan), supplemented with
10% heat-inactivated fetal bovine serum (FBS; Thermo
Fisher Scientific, Inc.), 100 U/mL of penicillin, 100 mg/mL of
streptomycin, and 25 mg/mL of amphotericin B (Nacalai
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Tesque, Inc.) at 37�C in a humidified atmosphere of 5% CO2

and 95% air.

Production of tasPDPN mutants

The synthesized DNA of tasPDPN was subcloned into a
pCAG vector (FUJIFILM Wako Pure Chemical Corporation,
Osaka, Japan), and PA16 tag (GLEGGVAMPGAEDDVV)

was added at the N-terminus. The deletion mutants of
tasPDPN produced using PCR were subcloned into pCAG
vector with PA16 tag using the In-Fusion HD Cloning Kit
(Takara Bio, Inc., Shiga, Japan). Substitutions of amino acids
to alanine in tasPDPN sequence were conducted using the
QuikChange Lightning Site-Directed Mutagenesis Kit (Agi-
lent Technologies, Inc., Santa Clara, CA). These constructs
were verified using direct DNA sequencing.

FIG. 1. Epitope mapping of PMab-233 using deletion mutants of tasPDPN. (A) Illustration of six tasPDPN deletion mutants
of dN30, dN40, dN50, dN60, dN70, and dN80. (B, C) Deletion mutants of tasPDPN were analyzed using flow cytometry.
Deletion mutants were expressed on CHO-K1 cells and were then incubated with NZ-1 (B; anti-PA16 tag, red line), PMab-233
(C; anti-tasPDPN mAb; red line), or buffer control (black line) for 30 minutes at 4�C, followed by treatment with corre-
sponding secondary antibodies. PLAG1, platelet aggregation-stimulating; PLD, PLAG-like domain.
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FIG. 2. Epitope mapping of PMab-233 using point mutants of tasPDPN. (A, B) Flow cytometry. Transient point mutants
expressing L27A, P28A, E29A, D30A, A31G, A32G, T33A, T34A, I35A, and D36A of tasPDPN were incubated with NZ-1
(A; red line), PMab-233 (B; red line), or buffer control (black line) for 30 minutes at 4�C, followed by treatment with
corresponding secondary antibodies. (C) Schematic illustration of the epitope recognized by PMab-233. Underlined amino
acids are the critical epitope of PMab-233.
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Flow cytometry

Transiently transfected CHO-K1 cells were detached by
0.25% trypsin/1 mM ethylenediaminetetraacetic acid (EDTA;
Nacalai Tesque, Inc.). After washing with 0.1% bovine serum
albumin (BSA)/phosphate buffered saline (PBS), the cells
were incubated with anti-tasPDPN antibody (PMab-233;
1mg/mL) or control anti-PA16 tag antibody (NZ-1; 1mg/mL)
for 30 minutes at 4�C followed by treatment with Alexa Fluor
488-conjugated antimouse IgG (1:1000; Cell Signaling Tech-
nology, Inc., Danvers, MA) and Oregon Green-conjugated
antirat IgG (1:1000; Thermo Fisher Scientific, Inc.), respec-
tively. Fluorescence data were collected using a Cell Analyzer
EC800 (Sony Corp., Tokyo, Japan).

Results and Discussion

In our previous study, we established a novel anti-tasPDPN
mAb, PMab-233, which can be efficiently utilized for flow
cytometry, Western blotting, and immunohistochemical de-
tection of tasPDPN.(29) Unfortunately, we could not investi-
gate the PDPN expression using normal tissues of Tasmanian
devil; therefore, we used formalin-fixed paraffin-embedded
CHO/tasPDPN cells. PMab-233 did not react with human,
mouse, rat, rabbit, dog, bovine, cat, pig, horse, tiger, alpaca,
bear, goat, sheep, or whale PDPNs, which indicates that
PMab-233 is specific to tasPDPN.(29) On the basis of these
results, the epitope mapping of PMab-233 could be beneficial
in uncovering the pathophysiological function of tasPDPN.

Although three tandem repeats of platelet aggregation-
stimulating (PLAG) domain (PLAG1, PLAG2, PLAG3) are
observed in human or mouse PDPNs,(30) PLAG2 and PLAG3
do not exist in tasPDPN (Fig. 1A). In contrast, two PLAG-
like domains were observed. We first constructed six deletion
mutants of tasPDPN (Fig. 1A). Transient transfections of
tasPDPN-mutant clones were produced using CHO-K1 cells,
including dN30 (corresponding to 30–143 amino acids [aa]);
dN40 (corresponding to 40–143 aa); dN50 (corresponding to
50–143 aa); dN60 (corresponding to 60–143 aa); dN70
(corresponding to 70–143 aa); and dN80 (corresponding to
80–143 aa). All deletion mutants of tasPDPN contain
N-terminal PA16 tag and were analyzed using flow cytom-
etry for epitope mapping of PMab-233. NZ-1 (anti-PA16 tag
mAb) detected all deletion mutants of tasPDPN, including
dN30, dN40, dN50, dN60, dN70, and dN80 (Fig. 1B). In
contrast, PMab-233 lost the reaction with dN30, dN40, dN50,
dN60, dN70, and dN80 (Fig. 1C). These results imply that
N-terminus of the epitope-binding region of PMab-233 is
located between the 27th and 30th amino acids.

Next, we investigated the epitope-binding region of PMab-
233 by producing 10 point mutants of tasPDPN, including L27A,
P28A, E29A, D30A, A31G, A32G, T33A, T34A, I35A, and
D36A. All these mutants can be recognized by NZ-1 (Fig. 2A).
We observed that PMab-233 reacted with L27A, P28A, E29A,
A31G, A32G, I35A, and D36A mutants, and weakly reacted
with D30A using flow cytometry (Fig. 2B). In contrast, PMab-
233 did not react with T33A and T34A (Fig. 2B).

In conclusion, we demonstrated that Asp30, Thr33, and
Thr34 of tasPDPN are critical for PMab-233-specific binding
to tasPDPN (Fig. 2C). Asp30, Thr33, and Thr34 are located in
PLAG1 domain of tasPDPN. PMab-233 can be a useful tool
in elucidating the pathophysiological function of tasPDPN.
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