Epitope Mapping of Anti-Diacylglycerol Kinase ζ Monoclonal Antibody for the Detection of T Cells by Immunohistochemical Analyses

Yukinari Kato,^{1,2} Shunsuke Itai,¹ Shinji Yamada,¹ Hiroyoshi Suzuki,³ and Mika K. Kaneko¹

The diacylglycerol kinases (DGKs) are a family of proteins that catalyze the phosphorylation of the cell membrane lipid diacylglycerol (DG), a cellular component that is important in lipid biochemistry and signal transduction, into phosphatidic acid. DG-mediated signal transduction downstream of the T cell receptor has previously been reported to be terminated in most cases by one of 10 DGK isoforms, DGK ζ . In this study, we performed immunohistochemical analysis using a rabbit anti-DGK ζ monoclonal antibody (mAb) (clone EPR22040-80) against tissues from the tonsils of a patient with oropharyngeal squamous cell carcinoma. We demonstrated that many DGK ζ -expressing T cells are localized in the tonsils. We further characterized the binding epitope using an enzyme-linked immunosorbent assay and found that Pro790, Gln791, Gly792, and Leu795 residues of DGK ζ are important for facilitating anti-DGK ζ mAb binding to DGK ζ . This anti-DGK ζ mAb could be valuable in immunohistochemical analyses in determining the distribution of DGK ζ -expressing T cells in pathophysiological tissues.

Keywords: diacylglycerol kinase, DGKζ, monoclonal antibody, epitope mapping

Introduction

D IACYLGLYCEROL KINASES (DGKs) ARE a family of proteins that phosphorylate the cell membrane lipid diacylglycerol (DG) into phosphatidic acid.⁽¹⁻³⁾ DG functions as an important second messenger in T cells.⁽⁴⁾ DG-mediated signal transduction downstream of T cell receptors (TCRs) is terminated by DGK α and DGK ζ , 2 of the 10 DGK isoforms.⁽⁵⁾ DGK ζ has been shown to be the dominant isoform.⁽⁶⁾ T cells deficient in either DGK α or DGK ζ are hyperresponsive, leading to enhanced proliferation and secretion of cytokines in response to TCR activation.⁽⁷⁻⁹⁾ Riese et al. demonstrated that CD8+ T cells deficient in DGKs exhibit enhanced activity against xenografts after adoptive transfer of T cells when expressing TCRs or chimeric antigen receptors specific for tumor antigens.⁽¹⁰⁾ Jing et al. reported that targeting DGK ζ may increase the efficacy of adoptive T cell and immune checkpoint therapies in the treatment of leukemia.⁽¹¹⁾

In the present study, we selected a commercially available rabbit anti-DGK ζ monoclonal antibody (mAb) that is advantageous for immunohistochemical analysis and further

characterized its binding epitope using enzyme-linked immunosorbent assay (ELISA).

Materials and Methods

Immunohistochemical analyses

We used tissues from a patient with oropharyngeal squamous cell carcinoma who had undergone surgery at the Sendai Medical Center. Informed consent for sample procurement and subsequent data analyses was obtained from the patient or the patient's guardian. The tissue samples were processed to produce 4-µm paraffin-embedded tissue sections that were autoclaved in EnVision FLEX Target Retrieval Solution High pH (Agilent Technologies, Inc., Santa Clara, CA) for 20 minutes and then blocked using the SuperBlock T20 (PBS) blocking buffer (Thermo Fisher Scientific, Inc., Waltham, MA). Samples were incubated with rabbit anti-DGKζ mAb (clone: EPR22040-80; 1/4000 dilution; Abcam, Cambridge, United Kingdom) for 1 hour at room temperature and then treated using the Envision+ Kit for rabbit (Agilent Technologies, Inc.) for 30 minutes. The tissue sections were stained using 3.3'-

¹Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.

²New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan.

³Department of Pathology and Laboratory Medicine, Sendai Medical Center, Sendai, Japan.

EPITOPE OF ANTI-DGKZETA mAb

diaminobenzidine tetrahydrochloride (DAB; Agilent Technologies, Inc.) for 2 minutes and counterstained using hematoxylin (FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan).

Enzyme-linked immunosorbent assay

The DGK^{\(\zeta\)} peptides synthesized using PEPScreen (Sigma-Aldrich Corp., St. Louis, MO) were immobilized on Nunc MaxiSorp 96-well immunoplates (Thermo Fisher Scientific, Inc.) at concentrations of 10 µg/mL for 30 minutes at 37°C. Following blocking with SuperBlock T20 (PBS) blocking buffer, the plates were incubated with 1 µg/mL of rabbit anti-DGKζ mAb, followed by 1:1000 dilution of peroxidaseconjugated anti-rabbit IgG (Agilent Technologies, Inc.). The enzymatic reaction was performed using 1-Step Ultra TMB-ELISA (Thermo Fisher Scientific, Inc.). Optical density was measured at 655 nm using an iMark microplate reader (Bio-Rad Laboratories, Inc., Berkeley, CA). These reactions were performed at 37°C using a total sample volume of $50-100 \,\mu$ L.

The 4-µm paraffin-embedded tissue sections were directly autoclaved in EnVision FLEX Target Retrieval Solution High pH (Agilent Technologies, Inc.) for 20 minutes and blocked using the SuperBlock T20 (PBS) blocking buffer (Thermo Fisher Scientific, Inc.), incubated with a rabbit anti-DGK^{\zet} mAb (clone: EPR22040-80; 1/4000 dilution; Abcam) plus peptides $(1 \mu g/mL)$ for 1 hour at room temperature, and then treated using the Envision+ Kit for rabbit (Agilent Technologies, Inc.) for 30 minutes. The tissue sections were stained using DAB (Agilent Technologies, Inc.) for 2 minutes, and counterstaining was performed using hematoxylin (FUJIFILM Wako Pure Chemical Corporation).

Results

For immunohistochemical analysis, we used formalinfixed and paraffin-embedded (FFPE) sections, including the tonsils of a patient with oropharyngeal squamous cell carcinoma, because DGK^z is known to be expressed in activated T cells.⁽⁷⁻⁹⁾ As shown in Figure 1, the rabbit anti-DGK ζ mAb

FIG. 1. Immunohistochemical analysis of DGK ζ against oropharyngeal squamous cell carcinomas. Tissue sections were incubated with EPR22040-80 (1/4000 dilution; A, D, G, J) or blocking buffer (B, E, H, K) for 1 hour at room temperature and treated using the Envision+ Kit for rabbit (Agilent Technologies, Inc.) for 30 minutes. Scale bar = $100 \,\mu$ m. Hematoxylin and eosin staining (C, F, I, L). DGK, diacylglycerol kinase.

TABLE 1. DETERMINATIO	ON OF EPR22040-80 EPITOPE
by Enzyme-Linked	Immunosorbent Assay

Peptide	Sequence	EPR22040-80	Peptide	Sequence	EPR22040-80
1–20	MEPRDGSPEARSSDSESASA	_	641–660	VPEQLRIQVSRVSMHDYEAL	
11-30	RSSDSESASASSSGSERDAG	—	651–670	RVSMHDYEALHYDKEQLKEA	—
21-40	SSSGSERDAGPEPDKAPRRL	_	661–680	HYDKEQLKEASVPLGTVVVP	—
31-50 41 60	PEPDKAPKKLNKKKFPGLKL	—	6/1-690	SVPLGTVVVPGDSDLELSRA	_
41-00 51 70	REALT ALL ADDD	_	681 - 700	GDSDLELSKAHIERLQQEPD	
61_80	GLOHLAPPPPTPGAPSSESE	_	701 720	GAGAKSPTSOKI SPKWSEI D	
71-90	TPGAPSSESEROIRSTVDWS	_	701-720	KI SPKWSFI DATTASRFYRI	_
81-100	ROIRSTVDWSESATYGEHIW		721–740	ATTASRFYRIDRAOEHLNYV	_
91–110	ESATYGEHIWFETNVSGDFS	_	731–750	DRAQEHLNYVTEIAQDEIYI	_
101-110	FETNVSGDFSYVGEQYSVAR	—	741–760	TEIAQDEIYILDPELLGASA	_
111-130	YVGEQYSVARMLQKSVSRRK	—	751–770	LDPELLGASARPDLPTPTSP	—
121-140	MLQKSVSRRKSAASKIVVHT	—	761–780	RPDLPTPTSPLPTSPSSPTP	_
131–150	SAASKIVVHTPSIEQLEKIN	—	771–790	LPTSPSSPTPRSLQGDAAPP	—
141-160	PSIEQLEKINFRSKPSFRES		781-800	RSLQGDAAPPQGEELIEAAK	+++
151-170	FK5KP5FKE5G5KNVKEP1F	—	/91-810	QGEELIEAAKRNDFSKLQEL	—
171 100	VPHHWVHPPPODGKSPHSGK		801-820	KNDFSKLQELHKAGGDLMHK	—
181_200	ODGKSRHSGKGEOOKETEHS	_	811-850		
191-210	GFOOKFTFHSKEIVAISSSW		821-840	AVSTGSKDVVRVLLDHAPPF	_
201-220	KEIVAISSSWSKOAYHSKVS		841-860	RYLLDHAPPEILDAVEENGE	
211-230	SKOAYHSKVSSFMLOOIEEP		851-870	ILDAVEENGETSLHOAAALG	_
221-240	SFMLQQIEEPSSLGVHAAVV	_	861-880	TSLHOAAALGORTISHYIVE	_
231-250	SSLGVHAAVVIPPTWILRAR	—	871-890	QRTISHYIVEAGASLMKTDQ	_
241-260	IPPTWILRARRPQNTLKASK	—	881-900	ÀGASLMKTDQQGDTPRQRÀE	_
251-270	RPQNTLKASKKKKRASFKRK	—	891–910	QGDTPRQRAEKAQDTELAAY	—
261-280	KKKRASFKRKSSKKGPEEGR	—	901–920	KAQDTELAAYLENRQHYQMI	_
271-290	SSKKGPEEGRWRPFIIRPTP	—	911–929	LENRQHYQMIQREDQETAV	—
281-300	WRPFIIRPTPSPLMKPLLVF			0.55 > 0.6 0.0555 < 0.2	
291-310	VNDVSCCNOCAVIJOSEI WV	—	+++, UL	$0033 \ge 0.0;$ —, $0D033 < 0.2.$	
311_330	AKIIOSEI WYI NPROVEDI S				
321-340	I NPROVEDI SOGGPKEALEM	_			
331-350	OGGPKEALEMYRKVHNLRIL	_			
341–360	YRKVHNLRILASGGDGTVGW				
351-370	ASGGDGTVGWILSTLDQLRL	_			
361-380	ILSTLDQLRLKPPPPVAILP	_	ΤΑΒΙΕ	2 DETERMINATION OF $FPR22040$	-80 Epitope
371-390	KPPPPVAILPLGTGNDLART	_	BY	Enzyme-Linked Immunosorben	T Assay
381-400	LGTGNDLARTLNWGGGYTDE	—		Using Point Mutants	
391-410	LNWGGGYTDEPVSKILSHVE	—			
401-420	PVSKILSHVEEGNVVQLDRW		Mutation	Sequence	EPR22040-80
411-430	DI HAEPNDEAGDEDDEGAT	_	D791A		
431_450	GPEDRDEGATORI PI DVENN	_	8782A	ASLQODAAFFQOEELIEAAK RALOGDAAPPOGEELIEAAK	+++
441-460	DRLPLDVFNNYFSLGFDAHV	_	L783A	RSAOGDA APPOGEELIEAAK	+++
451-470	YFSLGFDAHVTLEFHESREA		0784A	RSLAGDAAPPOGEELIEAAK	+++
461-480	TLEFHESREANPEKFNSRFR		Ğ785A	RSLQADAAPPOGEELIEAAK	+++
471-490	NPEKFNSRFRNKMFYAGTAF		D786A	RSLQGAAAPPQGEELIEAAK	+++
481-500	NKMFYAGTAFSDFLMGSSKD	—	A787G	RSLQGDGAPPQGEELIEAAK	+++
491–510	SDFLMGSSKDLAKHIRVVSD	—	A788G	RSLQGDAGPPQGEELIEAAK	+++
501-520	LAKHIRVVSDGMDLTPKIQD	—	P789A	RSLQGDAAAPQGEELIEAAK	+++
511-530	GMDLTPKIQDLKPQSVVFLN	—	P790A	RSLQGDAAPAQGEELIEAAK	++
521-540	LKPQSVVFLNIPRYSAGTMP	—	Q791A	RSLQGDAAPPAGEELIEAAK	+
531-550		—	G/92A	RSLQGDAAPPQAEELIEAAK	
551 570	WORFGERRUFEPQKHUUGIL		E/93A E704A	KSLUGDAAPPUGAELIEAAK	+++
561_580	EVIGETMTSI AAI OVGGHGE	_	E/94A	RSLQGDAAPPQGEALIEAAK	+++
571_500	AALOVGGHGERI TOSREVVI		1706A	RSLOODAATTQUEEAIEAAN RSLOODAAPPOCEFIAEAAN	
581-600	RLTOSREVVLTTSKAIPVOV		E797A	RSLOGDA APPOGEFLIA A A K	+++
591-610	TTSKAIPVOVDGEPSKLAAS		A798G	RSLOGDAAPPOGEELIEGAK	+++
601-620	DGEPSKLAASRIRIALRNQA		A799G	RSLQGDAAPPOGEELIEAGK	+++
611–630	RIRIALRNQATMVQKAKRRS	_	K800A	RSLQGDAAPPQGEELIEAAA	+++
621–640	TMVQKAKRRSAAPLHSDQQP	—			
631-650	AAPLHSDQQPVPEQLRIQVS	_	Mutated	amino acids (Ala or Gly) are shown in	n bold letters.

(clone: EPR22040-80) stained the T cells of the tonsils very strongly, indicating that EPR22040-80 is extremely useful for the detection of DGK ζ in FFPE tissues.

Next, we examined the binding epitope of EPR22040-80. We first produced 92 synthetic peptides of DGK ζ , in which all cysteine residues were converted into serine residues to avoid self-aggregation (Table 1). Using ELISA, we demonstrated that the 781–800 position peptide was detected by EPR22040-80. We also synthesized 20 peptides, including a number of point mutations of the peptide at positions 781–800 (Table 2). Almost all the point mutations were detected by EPR22040-80, except for P790A, Q791A, G792A, and L795A, indicating Pro790, Gln791, Gly792, and Leu795 are included in the critical epitope of EPR22040-80. The epitope of EPR22040-80 is summarized in Figure 2.

We further performed an inhibition assay using immunohistochemistry. Although EPR22040-80 reacted with the T cells of oropharyngeal squamous cell carcinoma, these reactions were completely neutralized by R781A. L795A did not block the reactions of EPR22040-80 (Fig. 3). These data supported the contention that Leu795 of DGK ζ is critical for EPR22040-80 detection.

Discussion

We have developed anti-DGK α (clone: DaMab-2)^{(12)} and anti-DGK γ (clone: DgMab-6)^{(13)} mAbs, both of which are extremely useful for immunocytochemical analysis. We characterized the binding epitope of DaMab-2 using Western blots and revealed that the Cys246, Lys249, Pro252, and Cys253 residues of DGK α are important for binding of DaMab-2 to DGK α .⁽¹⁴⁾ These findings could be applied for the production of more functional anti-DGKa mAbs. We have not developed anti-DGK ζ mAbs, which are useful for immunocytochemical and immunohistochemical analyses. In particular, it is difficult to develop mAbs for immunohistochemical analyses against FFPE tissue sections. Therefore, we first characterized commercially available anti-DGKζ mAbs. Among several anti-DGKζ mAbs, a rabbit anti-DGKζ mAb (clone: EPR22040-80 from Abcam) stained the T cells of tonsils very strongly. According to the Abcam product datasheet, EPR22040-80 is produced by immunizing recombinant fragments within human DGKC (700 aa-1000 aa). However, the critical epitope of EPR22040-

FIG. 2. Schematic illustration of EPR22040-80 epitope. Red amino acids, strong reaction with EPR22040-80.

FIG. 3. Inhibition assay. Tissue sections were incubated with EPR22040-80 (A, B), EPR22040-80+R781A (C, D), EPR22040-80+L795A (E, F), or blocking buffer (G, H) for 1 hour at room temperature and treated using the Envision+ Kit for rabbit (Agilent Technologies, Inc.) for 30 minutes. Scale bar = $100 \,\mu$ m. (I, J) Hematoxylin and eosin staining.

80 has not been determined. In this study, ELISA demonstrated that Pro790, Gln791, Gly792, and Leu795 of DGK ζ are included in the critical epitope of EPR22040-80. This epitope seems to be included between catalytic domain and ankyrin repeats of DGK ζ (Fig. 2). EPR22040-80 could be valuable for immunohistochemical analyses and in clarifying our understanding of the distribution of DGK ζ -expressing T cells in a wide range of pathophysiological tissues. These findings can be applied to the production of more functional anti-DGK ζ mAbs.

Acknowledgments

We thank Takuro Nakamura, Miyuki Yanaka, Kayo Hisamatsu, Saori Handa, Yoshimi Nakamura, and Maki Takahashi for their excellent technical assistance. This research was supported, in part, by AMED under Grant Nos. JP18am0101te078 (Y.K.), JP18am0301010 (Y.K.), and JP18ae0101028 (Y.K.), and by JSPS KAKENHI Grant no. 17K07299 (M.K.K.) and Grant no. 16K10748 (Y.K.).

Author Disclosure Statement

Y.K. received research funding from Ono Pharmaceutical Co., Ltd. The other authors have no conflict of interest.

References

- Topham MK, and Epand RM: Mammalian diacylglycerol kinases: Molecular interactions and biological functions of selected isoforms. Biochim Biophys Acta 2009;1790:416– 424.
- 2. Goto K, Hozumi Y, Nakano T, Saino SS, and Kondo H: Cell biology and pathophysiology of the diacylglycerol kinase family: Morphological aspects in tissues and organs. Int Rev Cytol 2007;264:25–63.
- Eichmann TO, and Lass A: DAG tales: The multiple faces of diacylglycerol—Stereochemistry, metabolism, and signaling. Cell Mol Life Sci 2015;72:3931–3952.
- Joshi RP, and Koretzky GA: Diacylglycerol kinases: Regulated controllers of T cell activation, function, and development. Int J Mol Sci 2013;14:6649–6673.
- 5. Krishna S, and Zhong X: Role of diacylglycerol kinases in T cell development and function. Crit Rev Immunol 2013; 33:97–118.
- Joshi RP, Schmidt AM, Das J, Pytel D, Riese MJ, Lester M, Diehl JA, Behrens EM, Kambayashi T, and Koretzky GA: The zeta isoform of diacylglycerol kinase plays a predominant role in regulatory T cell development and TCRmediated ras signaling. Sci Signal 2013;6:ra102.
- Zhong XP, Hainey EA, Olenchock BA, Jordan MS, Maltzman JS, Nichols KE, Shen H, and Koretzky GA: Enhanced T cell responses due to diacylglycerol kinase zeta deficiency. Nat Immunol 2003;4:882–890.
- 8. Zha Y, Marks R, Ho AW, Peterson AC, Janardhan S, Brown I, Praveen K, Stang S, Stone JC, and Gajewski TF: T cell anergy is reversed by active Ras and is regulated by

diacylglycerol kinase-alpha. Nat Immunol 2006;7:1166–1173.

- Olenchock BA, Guo R, Carpenter JH, Jordan M, Topham MK, Koretzky GA, and Zhong XP: Disruption of diacylglycerol metabolism impairs the induction of T cell anergy. Nat Immunol 2006;7:1174–1181.
- Riese MJ, Wang LC, Moon EK, Joshi RP, Ranganathan A, June CH, Koretzky GA, and Albelda SM: Enhanced effector responses in activated CD8+ T cells deficient in diacylglycerol kinases. Cancer Res 2013;73:3566–3577.
- 11. Jing W, Gershan JA, Holzhauer S, Weber J, Palen K, McOlash L, Pulakanti K, Wesley E, Rao S, Johnson BD, and Riese MJ: T cells deficient in diacylglycerol kinase zeta are resistant to PD-1 inhibition and help create persistent host immunity to leukemia. Cancer Res 2017;77:5676–5686.
- 12. Nakano T, Ogasawara S, Tanaka T, Hozumi Y, Mizuno S, Satoh E, Sakane F, Okada N, Taketomi A, Honma R, Nakamura T, Saidoh N, Yanaka M, Itai S, Handa S, Chang YW, Yamada S, Kaneko MK, Kato Y, and Goto K: DaMab-2: Anti-human DGKalpha monoclonal antibody for immunocytochemistry. Monoclon Antib Immunodiagn Immunother 2017;36:181–184.
- Nakano T, Ogasawara S, Tanaka T, Hozumi Y, Yamaki A, Sakane F, Shirai Y, Nakamura T, Yanaka M, Yamada S, Kaneko MK, Kato Y, and Goto K: DgMab-6: Antihuman DGKgamma monoclonal antibody for immunocytochemistry. Monoclon Antib Immunodiagn Immunother 2018;37: 229–232.
- Sano M, Kaneko MK, and Kato Y: Epitope mapping of antidiacylglycerol kinase alpha monoclonal antibody DaMab-2. Monoclon Antib Immunodiagn Immunother 2019;38:8–11.

Address correspondence to: Yukinari Kato New Industry Creation Hatchery Center Tohoku University 2-1, Seiryo-machi Aoba-ku Sendai 980-8575 Miyagi Japan

E-mail: yukinarikato@med.tohoku.ac.jp

Received: February 1, 2019 Accepted: April 24, 2019