Detection of Tiger Podoplanin Using the Anti-Cat Podoplanin Monoclonal Antibody PMab-52

Shinji Yamada,1 Shunsuke Itai,1 Yoshikazu Furusawa,1,3,4 Masato Sano,1 Takuro Nakamura,1 Miyuki Yanaka,1 Saori Handa,1 Kayo Hisamatsu,1 Yoshimi Nakamura,1 Masato Fukui,4 Hiroyuki Harada,2 Takuya Mizuno,5 Yusuke Sakai,6 Satoshi Ogasawara,7 Takeshi Murata,7 Hiroaki Uchida,8 Hideaki Tahara,8 Mika K. Kaneko,1 and Yukinari Kato1,3

Podoplanin (PDPN) is expressed in type I alveolar cells of lung but not in type II alveolar cells. PDPN is also known as a specific lymphatic endothelial cell marker because PDPN is not expressed in vascular endothelial cells. PDPNs of several animals have been characterized using specific anti-PDPN monoclonal antibodies (mAbs): PMab-1, PMab-2, PMab-32, PMab-38, PMab-44, and PMab-52 for mouse, rat, rabbit, dog, bovine, and cat PDPNs, respectively. In this study, we investigated the possible crossreaction between these anti-PDPN mAbs and tiger PDPN. Flow cytometry and western blot analyses revealed that the anti-cat PDPN mAb PMab-52 (IgM, kappa) reacted with tiger PDPN, which is overexpressed in Chinese hamster ovary-K1 cells. Using immunohistochemical analysis, type I alveolar cells of the tiger lung were strongly detected by PMab-52. These results indicate that PMab-52 may be useful for the detection of tiger PDPN.

Keywords: tiger podoplanin, PDPN, PMab-52
In the present study, we investigated the potential cross-reaction between our anti-PDPN mAbs for many species and tiger PDPN using flow cytometry, western blot, and immunohistochemical analyses.

Materials and Methods

Cell line

Chinese hamster ovary (CHO)-K1 cell line was purchased from the American Type Culture Collection (ATCC; Manassas, VA). CHO-K1 and transfectants were cultured in RPMI medium (Nacalai Tesque, Inc., Kyoto, Japan) supplemented with 10% heat-inactivated fetal bovine serum (Thermo Fisher Scientific, Inc., Waltham, MA), 100 U/mL of penicillin, 100 µg/mL of streptomycin, and 25 µg/mL of amphotericin B (Nacalai Tesque, Inc.) at 37°C in a humidified atmosphere of 5% carbon dioxide and 95% air.

Overexpression of tiger PDPN in CHO-K1 cells

The synthesized DNA of tiger PDPN (accession no.: XM_007083790.2) plus the N-terminal LP tag (NSVTGIRIEDLPTSES), recognized by an anti-LP tag mAb [LpMab-17(14)], was subcloned into a pCAG-Neo vector (FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan). Plasmids were transfected using Lipofectamine LTX with Plus Reagent (Thermo Fisher Scientific, Inc.). Stable transfectants were selected by limiting dilution and cultivated in a medium containing 0.5 mg/mL of G418 (Nacalai Tesque, Inc.).

Flow cytometry

Cells were harvested after brief exposure to 0.25% trypsin/1 mM ethylenediaminetetraacetic acid (EDTA; Nacalai Tesque, Inc.). After washing with phosphate-buffered saline (PBS) containing 0.1% bovine serum albumin, the cells were treated with PMab-52 (1 or 10 µg/mL) for 30 minutes at 4°C, followed by the addition of secondary antibodies.

Western blot analysis

Cell lysates (10 µg) were boiled in sodium dodecyl sulfate sample buffer (Nacalai Tesque, Inc.). The proteins were electrophoresed using 5%–20% polyacrylamide gels (FUJIFILM Wako Pure Chemical Corporation) and transferred onto a polyvinylidene difluoride membrane (Merck KGaA, Darmstadt, Germany). After blocking with 4% skim milk (Nacalai Tesque, Inc.), the membrane was initially incubated with 1 µg/mL of PMab-52 or anti-β-actin (clone AC-15; Sigma-Aldrich, Corp., St. Louis, MO) and subsequently with peroxidase-conjugated anti-mouse IgG (1:1000; Cell Signaling Technology, Inc., Danvers, MA). Fluorescence data were acquired using Cell Analyzer SA3800 (Sony Corp., Tokyo, Japan).

Immunohistochemical analyses

Tiger lungs were collected at autopsy in Yamaguchi University, fixed in 10% neutral-buffered formalin, and processed routinely to make paraffin-embedded tissue sections. Histological sections (4-µm thick) of tiger lungs were directly autoclaved in citrate buffer (pH 6.0; Nichirei Biosciences, Inc., Tokyo, Japan) for 20 minutes. After blocking with SuperBlock T20 (PBS) Blocking Buffer (Thermo Fisher Scientific, Inc.), sections were incubated with PMab-52 (0.5 µg/mL) for 1 hour at room temperature and treated using Envision+ Kit (Agilent Technologies, Inc.) for 30 minutes. Next, color was developed using 3,3-diaminobenzidine tetrahydrochloride (DAB; Agilent Technologies, Inc.) for 2 minutes, and counterstaining was performed with Hematoxylin (FUJIFILM Wako Pure Chemical Corporation).

Results and Discussion

We previously developed a mouse anti-cat PDPN mAb (PMab-52: IgM, kappa) using the Cell-Based Immunization
PMab-52 specifically detects cat PDPN using flow cytometry and successfully recognizes cat PDPN in feline squamous cell carcinomas. Furthermore, a series of deletion or point mutants of cat PDPN were utilized to investigate the binding of PMab-52 epitopes using flow cytometry and western blotting. The PLAG4 of cat PDPN was identified as a critical epitope of PMab-52. Comparison of amino acid sequences revealed that 99% homology is observed between the tiger and cat PDPNs (Supplementary Fig. S1). Therefore, in this study, we investigated the potential reaction between PMab-52 and tiger PDPN.

We initially produced a tiger PDPN-stable transfectant using CHO-K1 cells plus an N-terminal LP tag, recognized by an anti-LP tag mAb (LpMab-17). Flow cytometry revealed that PMab-52 reacted with CHO/cat PDPN (cPDPN) and CHO/tiger PDPN (tigPDPN) in a dose-dependent manner (Fig. 1A). The other anti-PDPN mAbs, namely, anti-mouse (PMab-1), anti-rat (PMab-2), anti-rabbit (PMab-32), anti-dog (PMab-38) and PMab-48, and anti-bovine (PMab-44), did not react with CHO/tigPDPN (data not shown). Western blot analysis revealed that PMab-52 also detected specific bands of CHO/cPDPN and CHO/tigPDPN (Fig. 1B). These results indicate that PMab-52 is useful for the detection of tiger PDPN. Subsequently, we investigated the expression of tiger PDPN in the tiger lung. Previously, it was shown that PMab-52 reacted with type I alveolar cells of the feline lung. Similarly, PMab-52 strongly stained type I alveolar cells of the tiger lung in a membrane-staining pattern (Fig. 2A, B).

In conclusion, PMab-52 is useful for the detection of tiger PDPN using flow cytometry, Western blot, and immunohistochemical analyses. Further studies are necessary to show that PMab-52 is able to detect tiger PDPN in other healthy tiger tissues or tiger cancers, such as mesotheliomas.

FIG. 2. Immunohistochemical analyses using tiger lung tissues. Histological sections of the tiger lung were directly autoclaved in citrate buffer for 20 minutes. After blocking, sections were incubated with 0.5 μg/mL of PMab-52 (A, B) or control phosphate-buffered saline (C, D), followed by detection using Envision+ Kit. (E, F) Hematoxylin and Eosin staining. Scale bar = 100 μm.
Acknowledgments

This research was supported in part by AMED under Grant Nos.: JP18am0101078 (Y.K.), JP18am0301010 (Y.K.), and JP18aa0101028 (Y.K.), and by JSPS KAKENHI Grant Nos. 17K07299 (M.K.K.) and 16K10748 (Y.K.). This work was partially performed by the Grant for Joint Research Project of the Institute of Medical Science, the University of Tokyo.

Author Disclosure Statement

No competing financial interests exist.

References

Address correspondence to: Yukinari Kato
New Industry Creation Hatchery Center
Tohoku University
2-1, Seiryo-machi, Aoba-ku
Sendai, Miyagi 980-8575
Japan
E-mail: yukinari.kato@med.tohoku.ac.jp

Received: August 30, 2018
Accepted: September 29, 2018