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Podoplanin (PDPN/Aggrus/T1a/gp36/OTS-8), a type I transmembrane sialoglycoprotein, is involved in platelet
aggregation, cell invasion, and cancer metastasis. Podoplanin expression in cancer cells or cancer-associated
fibroblasts was reported to be involved in poor prognosis of several cancers. Furthermore, podoplanin is expressed
in lymphatic endothelial cells or lung type I alveolar cells. Although many anti-podoplanin monoclonal antibodies
(MAbs), such as NZ-1 and D2–40, have been established, almost all anti-podoplanin MAbs are produced against a
platelet aggregation-inducing (PLAG) domain. In this study, we produced and characterized a novel anti-podo-
planin monoclonal antibody, LpMab-3, the epitope of which is a sialylated glycopeptide of podoplanin. We
identified the minimum epitope of LpMab-3 as Thr76–Glu81 of human podoplanin, which is different from PLAG
domain, using Western blot analysis and flow cytometry. Immunohistochemical analysis showed that LpMab-3 is
useful for detecting lung type I alveolar cells and lymphatic endothelial cells. Because LpMab-3 detects only
sialylated podoplanin, it could be useful for uncovering the physiological function of sialylated human podoplanin.

Introduction

P odoplanin (PDPN/Aggrus/T1a/gp36/OTS-8) is a
platelet aggregation-inducing mucin-type glycoprotein

that is involved in cancer metastasis.(1,2) Expression of po-
doplanin has been reported in many cancers including ma-
lignant gliomas, lung cancer, esophageal cancer, malignant
mesotheliomas, testicular tumors, bladder cancer, and osteo-
sarcoma.(1,3–14) Moreover, podoplanin expression in cancer-
associated fibroblasts (CAFs) was reported to be involved in
poor prognosis of several cancers.(15–20) We previously
identified C-type lectin-like receptor-2 (CLEC-2) as an en-
dogenous receptor of podoplanin(21,22) and recently per-
formed comparative crystallographic studies of podoplanin in
complex with CLEC-2.(23) The interaction with CLEC-2 was
mainly observed at Glu47 and Asp48 in the PLAG3 domain
and the a2–6 linked sialic acid at Thr52 of podoplanin.

Anti-podoplanin MAbs with high sensitivity and specificity
are necessary to analyze the physiological function of podoplanin
in normal tissues and cancers. Although many anti-podoplanin
MAbs have been produced, almost all anti-podoplanin MAbs
react with a platelet aggregation-inducing (PLAG) domain of
human podoplanin.(7,24–28) Rabbit polyclonal antibodies pro-

duced by immunizing recombinant rat podoplanin also recognize
PLAG domains, which were shown to be immunodominant an-
tigenic sites.(29) We recently established the platform to produce
cancer-specific MAbs (CasMabs).(30) In this study, we produced
and characterized a novel anti-podoplanin monoclonal antibody,
LpMab-3, one of non-CasMabs.

Materials and Methods

Cell lines and tissues

Chinese hamster ovary (CHO)-K1, glycan-deficient CHO
cell lines (Lec1, Lec2, and Lec8), LN229, NCI-H226, and
P3U1 were purchased from the American Type Culture
Collection (ATCC, Manassas, VA). Human lymphatic en-
dothelial cells (LEC) were obtained from Cambrex (Walk-
ersville, MD). The human glioblastoma cell line LN319 was
donated by Dr. Webster K. Cavenee (Ludwig Institute for
Cancer Research, San Diego, CA). CHO-K1, Lec1, Lec2,
Lec8, and LN229 were transfected with human podoplanin
plasmids (CHO/hPDPN, Lec1/hPDPN, Lec2/hPDPN, Lec8/
hPDPN, and LN229/hPDPN) using Lipofectamine 2000 (Life
Technologies, Carlsbad, CA) according to the manufacturer’s
instructions.(30) CHO-K1, Lec1, Lec2, Lec8, NCI-H226, and
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P3U1 were cultured in RPMI 1640 medium (Wako Pure
Chemical Industries, Osaka, Japan), and LN229 and LN319
were cultured in Dulbecco’s Modified Eagle’s Medium
(DMEM) medium (Wako Pure Chemical Industries), supple-
mented with 10% heat-inactivated fetal bovine serum (FBS;
Life Technologies), 2 mM L-glutamine (Life Technologies),
100 U/mL of penicillin, and 100mg/mL of streptomycin (Life
Technologies) at 37�C in a humidified atmosphere of 5% CO2

and 95% air. L-proline (0.04 mg/mL) was added for Lec1,
Lec2, and Lec8. LEC was cultured in endothelial cell medium
EGM-2MV supplemented with 5% FBS (Cambrex). Tissue
microarrays were purchased from Cybrdi (Frederick, MD).

Antibodies

LpMab-7 (mouse IgG1, kappa), NZ-1 (rat IgG2a, lambda),
r2336 (rabbit polyclonal), and RMab-3 (mouse IgG1, kappa)
were developed previously in our laboratories.(7,24,30,31)

Anti-FLAG tag MAb (1E6) and anti-b-actin MAb (AC15)
were purchased from Wako Pure Chemical Industries and
Sigma-Aldrich (St. Louis, MO), respectively.

Hybridoma production

BALB/c mice were immunized by intraperitoneal (i.p.)
injection of 1 · 108 LN229/hPDPN cells together with Imject
Alum (Thermo Fisher Scientific, Waltham, MA). After sev-
eral additional immunizations, a booster injection was given
i.p. 2 days before spleen cells were harvested. The spleen
cells were fused with P3U1 cells using GenomONE-CF
(Ishihara Sangyo Kaisha, Osaka, Japan). The hybridomas
were grown in RPMI medium with hypoxanthine, amino-
pterin, and thymidine selection medium supplement (Life
Technologies). The culture supernatants were screened using
enzyme-linked immunosorbent assay (ELISA) for binding to
recombinant human podoplanin purified from LN229/
hPDPN cells. Next, flow cytometry was performed against
LN229/hPDPN and LN229 cells.

Enzyme-linked immunosorbent assay

Purified proteins were immobilized on Nunc Maxisorp 96-
well immunoplates (Thermo Fisher Scientific) at 1 mg/mL
for 30 min.(30) After blocking with SuperBlock T20 (PBS)
blocking buffer (Thermo Fisher Scientific), the plates were
incubated with culture supernatant or purified MAbs
(1 mg/mL) followed by 1:1000 diluted peroxidase-conjugated
anti-mouse IgG (Dako, Glostrup, Denmark). The enzymatic
reaction was conducted with a 1-Step Ultra TMB-ELISA
(Thermo Fisher Scientific). The optical density was measured
at 655 nm using an iMark microplate reader (Bio-Rad La-
boratories, Philadelphia, PA). These reactions were per-
formed with a volume of 50mL at 37�C.

Production of podoplanin mutants

The amplified human podoplanin cDNA was subcloned
into a pcDNA3 vector (Life Technologies) and a FLAG
epitope tag was added at the C-terminus. Substitution of
amino acids to alanine in podoplanin was performed using a
QuikChange Lightning site-directed mutagenesis kit (Agilent
Technologies, Santa Clara, CA).(30,32) CHO-K1 cells were
transfected with the plasmids using a Gene Pulser Xcell
electroporation system (Bio-Rad Laboratories).

Flow cytometry

Cell lines were harvested by brief exposure to 0.25%
Trypsin/1 mM EDTA (Wako Pure Chemical Industries).(22)

After washing with phosphate-buffered saline (PBS), the
cells were treated with primary antibodies (1mg/mL) for
30 min at 4�C, followed by treatment with Oregon green-
conjugated anti-mouse IgG (Life Technologies), Alexa Fluor
488 conjugated anti-mouse IgG (Cell Signaling Technology,
Danvers, MA), or Alexa Fluor 488 conjugated anti-rat IgG
(Cell Signaling Technology). Fluorescence data were col-
lected using a FACS Calibur flow cytometer (BD Bio-
sciences, Braintree, MA) or a Cell Analyzer EC800 (Sony,
Tokyo, Japan).

Western blot analyses

Cell lysates (10 mg) were boiled in SDS sample buffer
(Nacalai Tesque, Kyoto, Japan).(33) The proteins were elec-
trophoresed on 5–20% polyacrylamide gels (Wako Pure
Chemical Industries) and were transferred onto a PVDF
membrane (EMD Millipore, Billerica, MA). After blocking
with SuperBlock T20 (PBS) Blocking Buffer, the membrane
was incubated with primary antibodies (1mg/mL), and then
with peroxidase-conjugated secondary antibodies (Dako,
Glostrup, Denmark; 1:1000 diluted), and developed with the
ECL-plus reagent (Thermo Fisher Scientific) using a Sayaca-
Imager (DRC, Tokyo, Japan).

Immunohistochemical analyses

Four-mm-thick histologic sections were deparaffinized in
xylene and rehydrated. Then they were autoclaved in citrate
buffer (pH 6.0; Dako) for 20 min. Sections were incubated
with 5mg/mL of LpMab-3 overnight at 4�C followed by
treatment with an Envision + kit (Dako). Color was devel-
oped using 3,3-diaminobenzidine tetrahydrochloride (DAB;
Dako) for 10 min, and the sections were counterstained with
hematoxylin (Wako Pure Chemical Industries).

Affinity determination by surface plasmon resonance

To determine the affinity, recombinant podoplanin-Fc was
immobilized on the surface of chips for analysis using the
BIAcore 3000 system (GE Healthcare, Piscataway, NJ). The
running buffer was 10 mM HEPES, 150 mM NaCl, and
0.005% v/v Surfactant P20 (BR-1003–68, pH 7.4; GE
Healthcare). LpMab-3 was passed over the biosensor
chip, and the affinity rate constants (association rate constant,
kassoc, and disassociation rate constant, kdiss) were determined
by nonlinear curve-fitting using the Langmuir one-site
binding model of the BIAevaluation software (GE Health-
care). The affinity constant (KA) at equilibrium was calcu-
lated as KA = kassoc/kdiss, and the dissociate constant (KD) was
determined as 1/KA.

Results

Production and characterization of novel
anti-podoplanin monoclonal antibody LpMab-3

To develop novel anti-podoplanin MAbs, we immunized
mice with LN229/hPDPN cells. The culture supernatants
were screened using ELISA for binding to recombinant
human podoplanin purified from LN229/hPDPN cells. After
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limiting the dilution of the hybridomas, LpMab-3 (IgG1,
kappa) was established. LpMab-3 reacted with LN229/
hPDPN, not with LN229, a podoplanin-negative cell line
(Fig. 1A). Furthermore, LpMab-3 detected endogenous po-
doplanin, which is expressed in LN319 (a glioblastoma cell

line), a lymphatic endothelial cell (LEC), and NCI-H226 (a
malignant mesothelioma cell line) (Fig. 1B). We next per-
formed flow cytometric analyses using LpMab-3 against
several glycan-deficient podoplanin transfectants (Fig. 1C).
LpMab-7, which was used as a positive control, reacted with

FIG. 1. (A) Flow cytometric analysis by LpMab-3 against LN229/hPDPN and LN229. Cell lines were treated with
LpMab-3 (1mg/mL) for 30 min at 4�C, followed by treatment with Oregon green-conjugated anti-mouse IgG. Fluorescence data
were collected using a FACS Calibur flow cytometer. (B) Western blot analysis by LpMab-3. Total cell lysate were electro-
phoresed on 5–20% polyacrylamide gels and transferred onto a PVDF membrane. After blocking, the membrane was incubated
with 1mg/mL of LpMab-3 and then with peroxidase-conjugated anti-mouse IgG; the membrane was detected using a Sayaca-
Imager. (C) Flow cytometric analysis by LpMab-3 and LpMab-7 against glycan-deficient podoplanin-expressing CHO cell
lines. Cell lines were treated with LpMab-3 and LpMab-7 (1mg/mL) for 30 min at 4�C, followed by treatment with Alexa Fluor
488 conjugated anti-mouse IgG. Fluorescence data were collected using a Cell Analyzer EC800. (D, E) Immunohistochemical
analysis against normal tissues using LpMab-3. Sections of normal lung (D) and normal colon (E) were incubated with 5mg/mL
of LpMab-3, followed by Envision + kit. Color was developed using DAB and counterstained with hematoxylin.
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all podoplanin transfectants. In contrast, LpMab-3 did not
react with Lec2/hPDPN (sialic acid-deficient), although it
reacted with CHO/hPDPN, Lec1/hPDPN (N-glycan defi-
cient), or Lec8/hPDPN (O-glycan deficient) cells, indicating
that LpMab-3 recognizes sialylated podoplanin.

We next performed a kinetic analysis of the interaction
of LpMab-3 with a recombinant podoplanin using surface
plasmon resonance (BIAcore). Determination of the associa-
tion and dissociation rates from the sensorgrams revealed that
kassoc of 1.12 · 104 (mol/L-s) - 1 and kdiss of 9.49 · 10–4 s - 1.
The KA at binding equilibrium, calculated as KA = kassoc/kdiss,
was 1.18 · 107 (mol/L) - 1, KD = 1/KA = 8.5 · 10–8 M. The af-
finity of LpMab-3 calculated by BIAcore is about 200 times
lower than that of NZ-1 (KD: 4.0 · 10–10 M).(34)

Immunohistochemical analysis against podoplanin-
expressing normal tissues using LpMab-3

We investigated the podoplanin expression in normal lung
and colon. As shown in Figure 1D, LpMab-3 detected type I
alveolar cells. In our previous study, NZ-1 could not detect
type I alveolar cells in immunohistochemistry(10); therefore,
LpMab-3 is more useful for detecting type I alveolar cells
compared with previous anti-podoplanin MAbs. LpMab-3
also detects lymphatic endothelial cells of normal colon (Fig.
1E). Taken together, LpMab-3 is useful for immunohisto-
chemistry using paraffin-embedded tissues.

Epitope mapping by Western blot analysis
and flow cytometry

To determine the LpMab-3 epitope, we first performed
Western blot analysis. LpMab-3 reaction was lost in point
mutations of 76–81 amino acids (Fig. 2A). This epitope in-
cludes Thr76, the only Ser/Thr residue, indicating that Thr76
is sialylated and is essential for LpMab-3 recognition. In
contrast, LpMab-7 reaction was lost in point mutations of
79–83 amino acids. Interestingly, 79–81 amino acids are
included as epitopes of both LpMab-3 and LpMab-7. Fur-
thermore, both LpMab-3 and LpMab-7 detects two bands
(40 kDa and 30 kDa; glycosylated podoplanin), whereas NZ-
1 (a rat anti-PLAG domain MAb) and r2336 (a rabbit anti-
N-terminus of podoplanin polyclonal antibody [pAb]) detect
only one band (40 kDa). Anti-FLAG tag MAb detects both
two bands of glycosylated podoplanin; therefore, both
LpMab-3 and LpMab-7 are more sensitive against podopla-
nin compared with anti-N-terminus antibodies (NZ-1 and
r2336). LpMab-7 and anti-FLAG tag MAbs also detected
non-glycosylated podoplanin (25 kDa) of several podoplanin
point mutants.

We next performed flow cytometric analysis using
LpMab-3 and NZ-1 MAbs against the same point mutants of

podoplanin. The results revealed that LpMab-3 did not react
with R79A, I80A, and E81A, and weakly reacted with T76A,
G77A, and I78A (Fig. 2B), indicating that TGIRIE sequence
is the minimum epitope, and Arg79, Ile80, and Glu81 are
much more critical residues for LpMab-3 epitopes (Fig. 2C).

Discussion

Podoplanin is expressed in normal tissues such as lym-
phatic endothelial cells, lung type I alveolar cells, epidermal
keratinocytes, kidney podocytes, and fibroblastic reticular
cells (FRCs) of lymph nodes.(35,36) Recently, several physi-
ological functions of podoplanin have been reported. The
activation of CLEC-2 by podoplanin (the signal from podo-
planin to CLEC-2) rearranges the actin cytoskeleton in den-
dritic cells to promote efficient motility along stromal
surfaces.(37) In contrast, the signal from CLEC-2 to podo-
planin controls the contractility of FRCs and lymph node
microarchitecture.(38) The physical elasticity of lymph nodes
is maintained by podoplanin of stromal FRCs and its mod-
ulation by CLEC-2 of dendritic cells.(39) Although we have
shown that podoplanin possesses platelet-aggregating activ-
ity via CLEC-2 in cancer models, podoplanin-CLEC-2 in-
teraction is also important for embryonic blood-lymphatic
vascular separation using platelet aggregation.(1,2,21,22,40–42)

The local sphingosine-1-phosphate release after podoplanin-
CLEC-2-mediated platelet activation is critical for the integ-
rity of high endothelial venules during immune responses.(43)

Furthermore, the development of ectopic lymphoid follicles is
dependent on Th17-expressing podoplanin.(44) Taken together,
the reciprocal interaction between podoplanin and CLEC-2 is
important in many physiological functions. Therefore, devel-
opment of novel anti-podoplanin MAbs, the epitopes of which
are different, is still important.

LpMab-3 possesses a unique epitope that is completely
different from that previously reported for anti-podoplanin
MAbs such as NZ-1 and D2–40. The epitope is similar to
that of LpMab-7; however, LpMab-3 needs sialylation of
Thr76. Because only a2–6 linked sialic acid was attached to
podoplanin on Lec8/hPDPN,(40) LpMab-3 epitope may in-
clude a2–6 linked sialic acid, not a2–3 linked sialic acid.
Therefore, LpMab-3 is useful for distinguishing Thr76-
sialylated from Thr76-nonsialylated podoplanin. However,
the binding affinity of LpMab-3 was shown to be lower
than that of NZ-1. Because the binding affinity of antibodies
is critical for antibody-based cancer therapy, affinity mat-
uration of LpMab-3 should be considered in the future.
Using the CasMab method, we can obtain not only cancer-
specific MAbs (CasMabs) but also non-CasMabs such
LpMab-3 and LpMab-7. Of interest, non-CasMabs, such as
LpMab-3, also include the glycan within those epitopes.(30)

FIG. 2. Epitope mapping of LpMab-7 by Western blot analysis and flow cytometry. (A) Western blotting by LpMab-3,
LpMab-7, NZ-1, r2336, 1E6, RMab-3 (a-IDH1), and AC-15 (a-b-actin). Total cell lysate were electrophoresed on 5–20%
polyacrylamide gels and transferred onto a PVDF membrane. After blocking, the membrane was incubated with 1 mg/mL of
primary antibodies and then with peroxidase-conjugated secondary antibodies; the membrane was detected using a Sayaca-
Imager. Blue arrow, 40 kDa band (glycosylated); red arrow, 30 kDa band (glycosylated); black arrow, 25 kDa band (non-
glycosylated). (B) Point mutants of human podoplanin were treated with NZ-1 and LpMab-3 (1 mg/mL) for 30 min at 4�C,
followed by treatment with Alexa Fluor 488 conjugated anti-rat IgG and anti-mouse IgG, respectively. Fluorescence data
were collected using a Cell Analyzer EC800. (C) TGIRIE sequence and a2–6 linked sialic acid are the critical epitope of
LpMab-3.
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Although antibody-dependent cellular cytotoxicity (ADCC)
and complement-dependent cytotoxicity (CDC) activities
are very important for an antibody-based molecular targeting
therapy, we could not investigate these activities because the
subclass of LpMab-3 is mouse IgG1. The conversion of sub-
class into human IgG1 or mouse IgG2a is necessary to dem-
onstrate ADCC/CDC activities.
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