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Mucosal melanoma metastasizes at an early stage of the disease
in human and dog. We revealed that overexpression of podo-
planin in tumor invasion fronts (IF) was related to poor prog-
nosis of dogs with mucosal melanoma. Moreover, podoplanin
expressed in canine mucosal melanoma cells promotes prolifer-
ation and aggressive amoeboid invasion by activating Rho-
associated kinase (ROCK)-myosin light chain 2 (MLC2) signal-
ing. PDPN-ROCK-MLC2 signaling plays a role in cell-cycle
arrest and cellular senescence escape as a mechanism for regu-
lating proliferation. Podoplanin induces amoeboid invasion in
the IFs of mouse xenografted tumor tissues, similar to canine
mucosal melanoma clinical samples. We further identified that
podoplanin expression was related to poor prognosis of human
patients with mucosal melanoma, and human mucosal melano-
ma with podoplanin-high expression enriched gene signatures
related to amoeboid invasion, similar to canine mucosal mela-
noma. Overall, we propose that podoplanin promotes canine and
human mucosal melanoma metastasis by inducing aggressive

Introduction

Human mucosal melanoma is the most aggressive subtype of
melanoma, and most patients develop an incurable metastatic disease,
irrespective of surgical removal (1). There is little effective systemic
therapy for human mucosal melanoma, and patients with mucosal
melanoma have worse prognoses than those with common cutaneous
melanoma, with a 5-year survival rate of 25% and 90%, respectively.
Therefore, it is crucial to develop a therapeutic strategy to restrict the
metastasis of human mucosal melanoma (1-4). However, human
mucosal melanoma research on the molecular mechanisms of tumor
progression, therapeutic targets, and biomarkers has not advanced
owing to its rarity, accounting for only 1% to 2% of all melanomas, with
an incidence of 2.2 per 1,000,000 persons/year (5-7).
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amoeboid invasion and naturally occurring canine mucosal
melanoma can be a novel research model for podoplanin expres-
sing human mucosal melanoma.

Implications: Podoplanin could be a new therapeutic target to
restrict the metastatic dissemination of canine and human mucosal
melanoma.
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Canine melanoma is a frequent tumor in dogs, reaching 100,000
diagnoses per year in the United States (8-10). In contrast to human
melanoma, approximately 60% to 70% of canine melanomas originate
from the gingiva of oral cavities and are classified as mucosal mela-
nomas (8). Generally, complete surgical removal is performed to
manage the local tumor; however, similar to human mucosal mela-
noma, local recurrence and distant metastasis frequently occur (8, 10).
Notably, naturally occurring canine mucosal melanomas share many
similarities with human counterpart, including genetic mutations,
histopathologic features, and clinical behavior (8, 11-13). Therefore,
naturally occurring canine mucosal melanoma could be a novel
research model for human mucosal melanoma (14-16).

Canine mucosal melanoma cells were recently found to express
podoplanin, a small transmembrane mucin-like glycoprotein (17, 18).
Podoplanin-targeting cytotoxic antibody therapy has exhibited anti-
tumor efficacy in dogs with mucosal melanoma (17). Overexpression
of podoplanin has been observed in human epithelial tumors, and the
intracellular domain of overexpressed podoplanin binds to the exrin/
radixin/moesin (ERM), which activates RhoA, a Rho-GTPase family
protein (19-22). Podoplanin expression is related to the frequency of
metastasis and poor prognosis of human patients with squamous cell
carcinoma (SCG; refs. 23, 24). A previous report showed that podo-
planin promotes tumor growth and migration of human and murine
cutaneous melanoma cells (25). Furthermore, the extracellular domain
of podoplanin has been shown to bind to platelets to promote tumor
growth and pulmonary metastasis of human cutaneous melanoma
cells (26). However, the intercellular signaling of podoplanin in canine
and human mucosal melanoma cells has not been explored.

Invasive human cutaneous melanoma cells have high cellular
plasticity, shifting from the mesenchymal to the amoeboid mode of
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motility to aggressively invade the extracellular matrix (ECM), a
process referred to as amoeboid invasion (27-31). Amoeboid-
invading cells are often enriched in the tumor invasion fronts (IF)
of primary human cutaneous melanoma compared with the tumor
bodies (TB) and possess high proliferative, migratory, invasive,
and metastasis colonizing characteristics (27-31). Therefore, amoe-
boid invasion is considered a leading driver of the many steps required
for the metastatic success of human cutaneous melanoma, including
separating from the primary tumor nests, invasion into blood
veins and regional lymph nodes, and colonization of metastatic
nests (27-31). Previously, podoplanin was reported to promote amoe-
boid invasion of murine cutaneous melanoma cells (32), thus we
hypothesized that podoplanin drives amoeboid invasion in canine and
human mucosal melanoma.

Our results show that podoplanin overexpressed in canine mucosal
melanoma IFs drives amoeboid invasion via Rho-associated kinase
(ROCK)-myosin right chain 2 (MLC2) signaling. Podoplanin expres-
sing amoeboid invading canine mucosal melanoma cells show highly
proliferative and invasive characteristics, and escape from cell-cycle
arrest and cellular senescence by activating ROCK-MLC2 signaling.
Moreover, human mucosal melanoma with podoplanin-high expres-
sion enriched gene signatures related to amoeboid invasion and
showed poor prognosis, similar to canine mucosal melanoma.

Materials and Methods

Cell culture

Canine melanoma cell lines, CMM2 and CMM12, were estab-
lished in our laboratory, as previously reported (18, 33, 34). CMM2
cells were cultured in RPMI1640 (FUJIFILM Wako) supplemented
with 10% heat-inactivated FBS (Serana Europe GmbH) and 5 mg/L
gentamicin (Sigma-Aldrich Corp.). CMM12 cells were cultured
in DMEM/Ham F-12 medium (FUJIFILM Wako) with 10% FBS,
100 U/mL penicillin, and 100 pug/mL streptomycin (FUJIFILM
Wako). Cells were maintained at 37°C in a humidified atmosphere
containing 5% CO,. Podoplanin knocked out (PDPN-KO) cells
were generated using CRISPR/Cas9. The CRISPR/Cas9 vector was
the pGuide-it-ZsGreenl vector (Takara Bio Inc.). Plasmid DNA was
transfected using Xfect transfection reagent (Takara Bio Inc.). The
sequence of the single-guide RNA (sgRNA) targeting canine podo-
planin was ACCGGGCAGCCGACGAGATG. To generate podo-
planin-overexpressed PDPN-KO cells (PDPN-KO-OE), CMM2
PDPN-KO#2 and CMM12 PDPN-KO#2 cells were transfected with
the lentivirus vector plasmid pCSII-CMV-MCS (RIKEN BRC DNA
Bank) encoding canine podoplanin ¢cDNA (NM_001003220.1).
Transfected cells were selected with puromycin (FUJIFILM Wako).

Inhibitors

ROCK (Fasudil, GSK269962A, and Y-27632) and myosin II
inhibitors [(-)-blebbistatin] were purchased from Selleck Chemi-
cals. Concentrations used unless otherwise stated were: 100 and
200 pmol/L Fasudil, 1 and 2 pmol/L GSK269962A, 100 and 200 pmol/L
Y-27632, and 30 and 60 pmol/L (-)-blebbistatin for CMM2 and
CMM.12, respectively. Unless otherwise stated, the treatment time
was 24 hours. Information of antibodies and reagents are described
in Supplementary Data.

IHC

THC was performed as described previously (18) and detailed
methods are described in Supplementary File. The IFs and TBs were
evaluated separately. The IFs were defined as melanoma cells with at
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least 50% contact with the matrix (29). Quantitative scores of 0, 1, 2,
3, 4, or 5 were assigned when 0, 1 to 10, 11 to 30, 31 to 50, 51 to 80, or
81% to 100% of the melanoma cells were podoplanin positive, respec-
tively. The staining intensity of podoplanin was rated on a scale of 0
to 3 where 0 = negative, 1 = weak, 2 = moderate, and 3 = strong.
Raw data were converted to IHC scores by multiplying the quantity
and staining intensity scores (24). An IHC score above the median
value was considered indicative of high podoplanin expression.
Morphologic analysis of tumor tissues was performed using hema-
toxylin and eosin (H&E)-stained sections as described previously.
Cell shape was graded from 0 to 3 (0 = round, 1 = ovoid, 2 =
elongated, and 3 = spindly), and a score was assigned as follows: cell
shape score = [(percentage of cells; % shape 0 x 0) + (% shape 1x1)
+ (% shape 2x2) + (% shape 3x3)], with values ranging from 0
(all cells round) to 300 (all cells spindle). For phosphor-MLC2
staining, three different thresholds were applied according to the
intensity scores (0, 1, 2, and 3), and a score was assigned as follows:
phosphor-MLC2 score = [percentage of cells; % intensity 0x0) +
(% intensity 1x1) + (% intensity 2x2) + (% intensity 3x3)], with
values ranging from 0 (no phosphor-MLC2 expression) to 300 (all
cells strongly expressed phosphor-MLC2). All evaluations were per-
formed using blinding clinicopathologic features.

Cell proliferation assay
Cells were stained with trypan blue. The cells were manually
counted, and the live cell count (unstained cells) was determined.

Annexin V/propidium iodide FACS
Detection of apoptosis cells was performed as described previous-
ly (18) and detailed methods are described in Supplementary Data.

Cell-cycle analysis
Cell-cycle analysis was performed as previously described (18) and
detailed methods are described in Supplementary Data.

Wound healing assay

A scratch wound was created in the cell monolayer using a 1,000-pL
pipette tip and washed with culture medium to remove floating cells.
The migrated areas were manually calculated using ImageJ software
(https://imagej.nih.gov/ij; ref. 35).

Transwell invasion assay
Transwell invasion assay was performed as described previous-
ly (18) and detailed methods are described in Supplementary Data.

mRNA sequencing

Total RNA was extracted using the RNeasy Mini Kit (Qiagen)
according to the manufacturer’s protocol. mRNA sequencing
(mRNA-seq) was performed using NovaSeq 6000/PE150. Raw
sequence reads were trimmed to remove adaptors and quality control
using fastp (version. 0.2.0; ref. 36). Mapping and transcript abundance
estimating were performed as in a previous report. These gene raw
count data were normalized by transcripts per kilobase million (TPM;
ref. 37). Gene expression differences between control and PDPN-KO
cells were calculated using TPM normalized expression scores, and
genes with fold change > 1.2 or < 0.83 (Ctrl KO#1 and KO#2) were
defined as differentially expressed genes (DEG). Genes whose TPM in
control cells was < 1.0 were excluded from the analyses. Gene ontology
(GO) term enrichment and Kyoto encyclopedia of genes and genomes
(KEGG) pathway analyses were performed using DAVID (ver.
DAVID Knowledgebase v2022q1).
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Western blot analysis

Western blot analysis was performed as described previously (18).
Briefly, cells were lysed in RIPA buffer supplemented with 10 mmol/L
NaF, 2 mmol/L Na;VO,, and a complete Mini Protease Inhibitor
Cocktail (Roche Diagnostics). After blocking with blocking buffer for
1 hour, primary antibodies were incubated overnight at 4°C. The
membranes were then incubated with horseradish peroxidase (HRP)-
conjugated antibodies. Membranes were developed using the ECL
Prime western blotting Detection System (GE Healthcare), and lumi-
nescence was captured and quantified using an imaging system
(ChemiDoc Image Lab, Bio-Rad Laboratories).

RhoA-GTP pulldown assay

RhoA-GTP pulldown assay was performed using the RhoA Pull-
Down Activation Assay Biochem Kit, according to the manufac-
turer’s protocol (#BK-036, Cytoskeleton, Inc.). Briefly, cells were
lysed RIPA buffer. Proteins (50 pg) were incubated with 15 ug
glutathione S-transferase (GST)-conjugated Rhotekin RBD beads
for 1 hour. RhoA expression was detected using immunoblotting.
HRP-conjugated anti-mouse IgM antibody (Abcam) was used as the
secondary antibody.

Cell culture on thick layers of collagen |

Collagen I mix (Cellmatrix Type I-A, Nitta Gelatin) was prepared
according to the manufacturer’s protocol with a final concentration of
1.0 mg/mL. After polymerization (4 hours), cells were seeded on top of
collagen in medium containing 10% FBS, allowed to adhere for
24 hours and media was changed to 1% FBS with or without inhibitors.
Cell morphology was analyzed using ImageJ software by manually
drawing around the cells. The roundness index was calculated as 4 x
area X Tt/perimeter?.

Gel contraction assay

Plates were incubated with 1% BSA in PBS for 1 hour. After washing
the plates with PBS, cells were embedded in collagen I mix (Cellmatrix
Type I-A) with a final concentration of 1.8 mg/mL. The gel was
incubated at 37°C for 1 hour, and the medium, with or without
inhibitors, was added. A pipette tip was used to loosen the gel from
the tissue culture vessel and incubated for 48 hours. The plate image
was scanned using ChemiDoc, and the percentage of gel contraction
was calculated using the Image] software.

Time-lapse imaging

Cells were seeded on 24-well plates, and images were captured for
8 hours at 30 minutes intervals using a microscope (BZ-X810;
Keyence).

Senescence-associated B-galactosidase stain

Senescence-associated beta-galactosidase (SA-B-GAL) staining was
performed using the Senescence $-Galactosidase Staining Kit (#9860,
Cell Signaling Technology) according to the manufacturer’s protocol.
Three random fields (x200) were assessed in each well.

Animal study

BALB/c-nu/nu mice (BALB/cSlc-nu/nu, 6-week-old female, Japan
SLC) and NOD/Shi-scid, IL-2RYKO (NOG) mice (6- to 12-week-old
females, Central Institute for Experimental Animals) were maintained
under specific pathogen-free conditions at 24 + 1°C, 40% to 70%
humidity, and a 12-hour light-dark cycle throughout all the experi-
ments. A total of 2.5x10° CMM2 and PDPN-KO cells derived from
CMM2 cells were subcutaneously injected into nude mice. A total of
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1 x 107 CMM12 and PDPN-KO cells derived from CMM]12 cells
were subcutaneously injected into NOG mice. Tumor volumes were
measured every 2 to 3 days. Tumor volume was calculated using the
following approximation formula: tumor volume = 1/2 x (major
radius) x (minor radius)®. The study protocol was approved by the
University of Tokyo Animal Care and Use Committee (approval
numbers P19-126H03 and P19-124).

BALB/c-nu/nu mice (BALB/cSlc-nu/nu, 11-week-old female, Japan
SLC) were used for lung metastasis assay. A total of 1 x 10° CMM2 and
PDPN-KO cells derived from CMM2 cells were intravenously injected
into the mice. Then, 25 days after tumor cell injection, the mice were
euthanized, lung tissues were collected, and the number of metastatic
foci was counted.

GO terms enrichment analysis and gene-set enrichment analysis
for public datasets

Information of the public datasets used is described in Supplemen-
tary Data. Gene expression differences between high and low podo-
planin expression tumors were evaluated using the Student ¢ test.
Significantly higher expressed genes in tumors with high podoplanin
expression were defined as DEGs. When the total sample number
was >10, the statistical significance criterion was P < 0.01; when the
total sample number was <10, the criterion was P < 0.05.

Gene sets were downloaded and analyzed using the GSEA
software (ver.4.2.2; ref. 38). The melanoma invasion gene set (39)
and mesenchymal amoeboid transition gene set (40) were referred
to in previous studies. Gene-set enrichment analysis (GSEA) was
performed using the following settings: permutations, 1,000; per-
mutation type, gene set; and metric for ranking genes, ¢ test.
Mucosal melanoma samples from dogs and humans were divided
into high and low podoplanin expression groups based on median
podoplanin expression. To perform GSEA using canine samples,
all ensemble gene IDs were converted from Canis familiaris to
Homo sapiens using R software (ver. 4.2.0, R Development Core
Team, 2019) with the “biomaRt” package (ver. 2.44.4). Significantly
enriched gene sets in podoplanin -high expression versus podopla-
nin -low expression samples were considered according to nominal
P < 0.05. Mesenchymal amoeboid transition gene expression in
human and canine mucosal melanoma tissues was evaluated
according to a previous report (40). Genes whose average expres-
sion in high- podoplanin-expressing tissues was more than 1.2-fold
compared with those of low podoplanin-expressing tissues were
selected and heat map images were generated.

Statistical analysis

R software was used for statistical analyses, and used packages were
described in Supplementary Data. Student ¢ test and x” test were used
for two group comparisons. Dunnett and one-way ANOVA with
Tukey-Kramer tests were used for multigroup comparisons. Survival
curves were estimated by the Kaplan-Meier method and differences

were estimated by the log rank test. In figure legends, “n” indicates the
number of biologic replicates. P < 0.05 was defined as significant.

Data availability

mRNA-seq data of control and PDPN-KO canine mucosal mela-
noma cells are available in the Genome Expression Omnibus with
accession number: GSE208269.

Supplementary experimental procedures

Other detailed experimental procedures are described in Supple-
mentary Materials and Methods.
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Results

PDPN is overexpressed in canine mucosal melanoma cells in the
tumor IFs and associated with poor prognosis in dogs

To evaluate the relationship between podoplanin expression and
clinicopathologic features of dogs with mucosal melanoma, IHC for
podoplanin was performed in 43 canine oral mucosal melanoma
tissues (Supplementary Table S1) and 6 normal gingival mucosa
tissues. Podoplanin was expressed in 88% (38/43) of the canine
mucosal melanoma tissues, whereas no podoplanin expression was
detected in the normal gingival mucosa epithelium (Fig. 1A-C).
Podoplanin-positive cells were confirmed as canine mucosal mel-
anoma cells by double staining with podoplanin and SOX10—
canine mucosal melanoma markers (ref. 41; Supplementary Fig. S1A).
The positivity and intensity of podoplanin expression were higher
in the IFs of canine mucosal melanoma tissues than in the TBs
(mean positivity 42% vs. 29%, mean intensity score 2.0 vs. 0.8,
respectively; Fig. 1A-C). High podoplanin expression in the IFs was
significantly associated with reduced progression-free survival
(PFS) and overall survival (OS) rates in dogs with mucosal melanoma,

while high podoplanin expression in the TBs was not significantly
associated with PFS and OS rates (Fig. 1D; Supplementary Table S2;
Supplementary Fig. S1B). Overall, podoplanin overexpressed in
canine mucosal melanoma IFs was associated with a poor prognosis
in dogs.

Podoplanin regulates canine mucosal melanoma proliferation,
survival, migration, and invasion

To evaluate the functions of podoplanin in canine mucosal mela-
noma, PDPN-KO cells were generated using CRISPR/Cas9 technology
from two canine mucosal melanoma cell lines (CMM2 and CMM12;
Supplementary Fig. S2A and S2B). PDPN-KO cells exhibited slow
growth and an increase in apoptotic cells with downregulation of the
antiapoptotic protein; BCL-2 and upregulation of the proapoptotic
protein; BAX compared with control cells (Fig. 2A and B; Supple-
mentary Fig. S2C and $2D). In addition, PDPN-KO cells showed lower
migration across two-dimensional (2D) surfaces and lower invasive-
ness in a three-dimensional (3D) ECM compared with control cells
(Fig. 2C and D; Supplementary Fig. S2E).
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Podoplanin overexpression in the IFs is associated with poor prognosis in dogs with mucosal melanoma. A-B, Podoplanin expression in normal gingival mucosal
tissues andinthe TBs and IFs of canine mucosal melanoma tissues. Podoplanin was stained with alkaline phosphatase, and podoplanin-positive cells were stained red.
Scale bars, 200 um (top left), 500 um (bottom left) and 100 um (top right and bottom middle). C, IHC scores of podoplanin expression in normal tissues (n = 6), the
TBs, and IFs from canine mucosal melanoma tissues (n = 43). One-way ANOVA with Tukey-Kramer test. D, Kaplan-Meier survival curves for PFS: left and OS: right of
dogs with mucosal melanoma above and below the median IHC score of PDPN expression in the IFs. Log-rank test. *, P < 0.05,; **, P < 0.01.
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Furthermore, DEGs in response to PDPN-KO were detected using
mRNA-seq. A total of 560 and 1,132 genes were downregulated and
upregulated in the PDPN-KO CMM2 cells, respectively. In addition,
1,726 and 1,122 genes were downregulated and upregulated in the
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PDPN-KO CMM12 cells, respectively (Supplementary Fig. S2F). In
control cells, genes related to cell proliferation and cell-cycle were
enriched compared with PDPN-KO cells, whereas genes related to the
negative regulation of cell proliferation, cell cycle, and cell motility
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were enriched in PDPN-KO cells (Fig. 2E). These results suggest that
podoplanin promoted proliferation, survival, migration, and invasion
of canine mucosal melanoma cells.

Podoplanin regulates amoeboid invasion features via
ROCK-MLC2 signaling

Podoplanin was reported to active ERM and RhoA (20); thus,
we evaluated their activation status. PDPN-KO cells exhibited
lower ERM phosphorylation and RhoA-GTPase expression, an active
form of RhoA, than those of control cells (Fig. 3A). Furthermore,
PDPN-KO cells exhibited lower myosin phosphatase targeting subunit
1 (MYPT1) and MLC2 phosphorylation, which are ROCK-targeting
proteins, than control cells (Fig. 3A). The number of cells with
cytoplasmic stress fibers was significantly decreased in PDPN-KO
cells (Fig. 3B and C). mRNA-seq also showed an upregulation of
ROCK/cytoskeleton-related genes in control cells compared with
PDPN-KO cells (Supplementary Fig. S3A).

We explored the morphologic alterations induced by PDPN-KO
(27-31). Under 3D collagen culture conditions, control cells dis-
played a reduction in cell size and an increase in the number of
rounded cells compared with 2D culture conditions (Fig. 3D-F).
The size of the PDPN-KO cells was significantly larger than that of
the control cells, and PDPN-KO decreased the number of rounded
cells under 3D collagen culture conditions (Fig. 3D-F). Controls
cells showed membrane blebs under 3D collagen culture conditions
(Fig. 3G). We then evaluated actomyosin contractile function
and found that the contraction rate of embedded PDPN-KO cells
was significantly lower than that of control cells (Fig. 3H and I).
Control cells showed lower adhesive capacity compared with
PDPN-KO cells (Supplementary Fig. S3B). In addition, a previous
report showed that podoplanin regulates proliferation of fibro-
blasts in a mechanically sensitive mechanism (42). The prolifer-
ation of control cells cultured on noncollagen coated dishes
(stiffness condition) was increased compared with that of cells
cultured on collagen thick layer dish (soft condition; Supplemen-
tary Fig. S3C, left), and the changes were dependent on podoplanin
expression (Supplementary Fig. S3C, right). Overall, podoplanin in
canine mucosal melanoma cells activated ROCK-MLC2 signaling
to drive high levels of actomyosin contraction which is necessary
for amoeboid invasion.

Loss of podoplanin leads to cell-cycle arrest and cellular
senescence

To elucidate the underlying mechanism of PDPN-mediated cell
proliferation, a cell-cycle analysis was performed, and the percentage
of cells in the S-phase cell-cycle was significantly decreased in
PDPN-KO cells (Fig. 4A). mRNA-seq of PDPN-KO cells showed an
increased gene expression of cyclin-dependent kinase inhibitor
(CDKi) compared with control cells (Supplementary Fig. S4A). How-
ever, PDPN-KO did not induce a common change in the expression

Podoplanin Drives Amoeboid Invasion in Mucosal Melanoma

of cyclin and cyclin-dependent kinase genes. A significant upregula-
tion of CDKi mRNA, and p21 and p27 proteins in PDPN-KO cells was
confirmed (Supplementary Fig. S4B and S4C). These results indicate
that PDPN promotes cell-cycle S-phase entry to support proliferation.

Interestingly, the number of cells with over 4N DNA (G,-M
phase cells) was significantly increased in PDPN-KO cells (Fig. 4A).
Furthermore, PDPN-KO cells displayed a significant increase in the
number of multi-nuclei cells that arise due to cytokinesis fail-
ure (43); consequently, cytokinesis failure was frequently observed
during the proliferation of PDPN-KO cells (Fig. 4B and C). These
results suggest that the increase of multi-nuclei PDPN-KO cells
was due to cytokinesis failure. In addition, SA-B-GAL stain-positive
cells were significantly increased among the PDPN-KO cells
(Fig. 4D and E) with upregulated p21 expression in PDPN-KO
cells (Supplementary Fig. S4C). p21 expression was upregulated
in the nuclei of cytokinesis-failed PDPN-KO cells compared with
control cells with a single nucleus (Supplementary Fig. S4D).
SA-B-GAL staining intensity and positivity in cytokinesis-failed
cells were higher in multi-nuclei PDPN-KO cells than in the control
mono nuclear cells (Supplementary Fig. S4E). Genes associated with
cellular senescence pathway were enriched in DEGs induced by
PDPN-KO (Supplementary Fig. S4F and S4G). Overall, PDPN-KO
induced cytokinesis failure in canine mucosal melanoma cells,
resulting in cellular senescence.

ROCK inhibition suppresses cell proliferation, migration, and
senescence

Next, we pharmacologically inhibited ROCK-MLC2 signaling
on canine mucosal melanoma cells to confirm that the loss of
ROCK-MLC2 signaling caused cell phenotype modifications in
PDPN-KO cells. In inhibitory experiments on canine mucosal mel-
anoma cells, ROCK and myosin II inhibition resulted in a dose-
dependent reduction of cell proliferation (Supplementary Fig. S5A
and S5B), an increase of the proportion of apoptotic cells, and
suppressions of migratory and invasive capacities (Supplementary
Fig. S5C-S5F). Moreover, ROCK and myosin II inhibition suppressed
stress fiber formation, increased cell area, decreased the number of
rounded cells, and reduced gel contractile capacities (Fig. 5A-C;
Supplementary Fig. S6A-S6C). The percentage of cells in the S-phase
cell-cycle was significantly reduced, and the percentage of cells with
over 4N DNA was significantly increased by ROCK and myosin II
inhibition (Supplementary Fig. S7A). The proportion of multi-nuclei
cytokinesis-failure cells and the number of SA-BGAL stain-positive
cells increased with the upregulation of p21 expression by ROCK and
myosin II inhibition (Supplementary Fig. S7B-S7E). Moreover, restor-
ing podoplanin expression in PDPN-KO cells (KO#2) rescued the
podoplanin induced features of amoeboid invasion including the
decrease of cell proliferation, p-MLC2 suppression, increase of cell
size, and change to an elongated cell shape (Fig. 5D-H; Supplementary
Fig. S7F). Overall, the inhibition of ROCK-MLC2 signaling in canine

Figure 3.

Podoplanin regulates amoeboid invasion features via ROCK-MLC2 signaling. A, Immunoblots of p-ERM, RhoA-GTP, p-MYPT1, and p-MLC2. Levels of phospho-protein
expression were calculated after correction to total levels of the relevant protein expression and are indicated under the immunoblot images of each total protein.
B, Confocal images of phalloidin and 4’,6-diamidino-2-phenylindole (DAPI) staining. Arrowheads show stress fibers in the cytoplasmic regions. Scale bar, 10 pm.
C, Percentage of stress fiber-positive and-negative cells (n = 3). D, Representative images of cellular morphologies under 2D and 3D collagen culture conditions.
Scale bar, 50 um. E, Cell areas under 2D or 3D collagen culture conditions (n = 50). F, Roundness index under the 2D or 3D collagen culture conditions (n = 50).
G, Representative confocal images of control cells with membrane blebs under the 3D collagen culture condition. Phalloidin stain was performed. White arrow heads
indicate membrane blebs. Scale bar, 10 um. H-I, Representative images (G) and quantification (H) of gel contraction rate. The yellow dashed line indicates the shape
of the collagen gels, and the red dashed line indicates the well of the culture plate (n = 3). Graphs show mean + SD. Dunnett test: *, P< 0.05; **, P< 0.01. Ctrl: control,

KO#1: podoplanin-KO cell line 1, KO#2: podoplanin-KO cell line 2.
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Loss of podoplanin leads to cell-cycle arrest and cellular senescence. A, Cell-cycle analysis (n = 3). B, Phalloidin- and DAPI-stained CMM2 cells (top) and the
percentage of multi nuclei cells (bottom; n = 3). White arrowheads indicate nuclei. Scale bar: 50 um. C, Time-lapse images during the proliferation of control (CMM2)
and PDPN-KO (KO#2 of CMM2) cells. Red arrowheads show cytokinesis failure cells among PDPN-KO cells, and yellow arrowheads show nuclei in control and
PDPN-KO cells. Scale bar, 10 um. D, Representative images of SA-B-GAL staining. Scale bar, 50 um. E, Percentage of SA-BGAL stain-positive cells (n = 3). Graphs
show mean =+ SD. Dunnett test: *, P < 0.05; **, P < 0.01. Ctrl: control, KO#1: PDPN-KO cell line 1, KO#2: PDPN-KO cell line 2.

mucosal melanoma cells showed similar effects as those found in
PDPN-KO cells, and restoring podoplanin expression in the PDPN-
KO cells showed recovery of those characteristics, suggesting that
podoplanin regulated the features of amoeboid invasion via ROCK-
MLC?2 signaling in canine mucosal melanoma cells.

1212 Mol Cancer Res; 21(11) November 2023

Podoplanin promotes amoeboid invasion features in
xenografted mouse models and clinical cases

To determine whether abrogation of podoplanin suppresses amoe-
boid invasion in canine mucosal melanoma cells in vivo, we generated
xenograft murine xenograft models that exhibited similar podoplanin
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Figure 5.

Podoplanin-ROCK-MLC2 signaling is the regulator of amoeboid invasion of canine mucosal melanoma cells. A, Representative images of cellular morphologies under
the 2D and 3D collagen culture conditions at 24 hours after inhibitors treatment. Scale bar, 50 um. B, Cell areas at 24 hours after inhibitors treatment (n = 50). Dunnett
test. C, Roundness index of cells at 24 hours after inhibitors treatment (n = 50). Dunnett test. D, Number of live cells of MOCK control and podoplanin overexpressed
PDPN-KO (PDPN-KO-OE) cells (n = 3). The number of cells were counted at 72 hours after cell seeding. E, Immunoblots of p-MLC2. Levels of phosphor-protein
expression were calculated after correction to total levels of the relevant protein expression and are indicated under the immunoblot images of each total protein.
F, Representative images of cellular morphologies of MOCK control and PDPN-KO-OE cells under 3D collagen culture conditions. Scale bar: 50 um. G, Cell areas of
MOCK control and PDPN-KO-OE cells under 3D collagen culture conditions (n = 65). Box limits show the 25th and 75th percentiles, the horizontal line represents
the median, and dotted plots show the scores of each cell. Dunnett test. H, Roundness index of MOCK control and PDPN-KO-OE cells under 3D collagen culture
conditions (n = 65). Box limits show the 25th and 75th percentiles, the horizontal line represents the median, and dotted plots show the scores of each cell. Dunnett
test. *, P < 0.05; **, P< 0.01.
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expression patterns to those of canine mucosal melanoma clinical
samples (Supplementary Fig. S8A). Tumor growth was significantly
suppressed by PDPN-KO (Fig. 6A). These results indicated that
podoplanin promoted proliferative and aggressive amoeboid invasion
in xenografted tumor tissues at the IFs.

To assess whether these observations were recapitulated in clinical
samples, we conducted IHC analysis. In control tumors, the percentage
of ki-67-expressing cells at the IFs was significantly higher and, that of
p21-expressing cells at the IFs was significantly lower, compared with
that of the TBs (Fig. 6B; Supplementary Fig. S8B). Cell roundness and
phosphor-MLC2 expression levels at the IFs were significantly higher
than those of the TBs in control tumors (Fig. 6C and D). Notably, the
percentage of ki-67, p21-expressing cells, cell roundness, and phos-
pho-MLC2 expression levels at the IFs of PDPN-KO tumors were
reversed to levels similar to those in the TBs of PDPN-KO tumors
(Fig. 6B-D; Supplementary Fig. S8B). The IFs of canine mucosal
melanoma enriched rounded tumor cells compared with the TBs, and
the number of rounded cells in the IFs was associated with podoplanin
expression levels in the IFs (Fig. 6E). Phospho-MLC2 expression levels
at the IFs were higher than the TBs, and phosphor-MLC2 expression
levels in the IFs were associated with podoplanin expression levels in
the IFs (Fig. 6F). These data suggested that podoplanin induced
aggressive amoeboid invasion in the IFs of canine mucosal melanoma,
which was linked to unfavorable outcomes in dogs.

To explore the relationship between podoplanin and distant col-
onization of canine mucosal melanoma cells, an in vivo lung metastasis
assay was performed, and the number of lung metastatic foci was
significantly reduced by PDPN-KO (Supplementary Fig. S9A and
S9B). This result suggests that PDPN promotes distant colonization
during the late stage of tumor metastasis.

Canine and human mucosal melanomas with high podoplanin
expression are enriched with gene signatures associated with
amoeboid invasion

Weanalyzed three cohorts of public datasets for canine oral mucosal
melanoma (44-46). The expression of the podoplanin gene level was
significantly higher in tumor tissues than in normal control tissues
(Supplementary Fig. S10A). GO term enrichment analysis showed that
tumors that exhibited high podoplanin expression were enriched in
genes related to ROCK/cytoskeleton (Supplementary Fig. S10B).
GSEA displayed that tumors with high PDPN expression were
enriched in gene signatures relevant to amoeboid invasion, prolifer-
ation, migration, and invasion (Supplementary Figs. S10C, S10D, and
S11). These findings suggest that podoplanin-dependent induction of
proliferative and aggressive amoeboid invasion is a common charac-
teristic of canine mucosal melanoma cells expressing podoplanin.

To assess the applicability of our discoveries from canine to human
mucosal melanoma, we investigated three human mucosal melanoma
public datasets (47, 48). The expression of the podoplanin gene level
was significantly higher in human mucosal melanoma tissues than in
normal control tissues (Supplementary Fig. SI2A). Survival analysis of
patients with stage 3 or 4 mucosal melanoma (n = 11) showed that

Podoplanin Drives Amoeboid Invasion in Mucosal Melanoma

patients with high podoplanin-expressing tumors had significantly
shorter PFS and OS than those with low podoplanin-expressing
tumors (Fig. 7A). Tumors with high podoplanin expression were
enriched in of ROCK/cytoskeleton-related and amoeboid invasion-
related gene signatures (Fig. 7B and C). Tumors with high podoplanin
expression showed enhanced gene expression of collagens associated
with amoeboid invasion (COLIA1, COL1A2, COL4A1, and COL4A2;
Supplementary Fig. S12B). Tumors with high podoplanin expression
had enriched gene signatures related to proliferation, migration, and
invasion (Fig. 7D; Supplementary Fig. S12C). Moreover, the upregu-
lation pattern of common mesenchymal amoeboid transition-related
genes was similar between human and canine mucosal melanomas
(Fig. 7E). These findings suggest that podoplanin promotes amoeboid
invasion in human mucosal melanoma through mechanisms similar to
those observed in canine mucosal melanoma.

Discussion

Podoplanin has been reported to drive amoeboid invasion in
murine cutaneous melanoma cells (32); however, that relationship in
canine and human melanoma had not been revealed. Especially in
canine and human mucosal melanoma, the relationship between
podoplanin and tumor malignancies had not been comprehensively
understood. In this study, we demonstrated that podoplanin over-
expressed in the tumor IFs was associated with poor prognosis in dogs
with mucosal melanoma and that podoplanin regulated features of
amoeboid invasion in canine mucosal melanoma cells via podoplanin-
ROCK-MLC2 signaling. Podoplanin expression was also related to the
enrichment of amoeboid invasion-related gene signatures in canine
and human mucosal melanoma tissues. These findings suggest that
podoplanin drives amoeboid invasion to acquire highly metastatic
features in canine and human mucosal melanoma.

Canine mucosal melanoma is one of the most common oral
malignancies in dogs and is a highly aggressive tumor that can
metastasize during the early stages of the disease (8, 10). The 1-year
survival rate of dogs with mucosal melanoma is less than 35% owing to
a high metastatic rate of more than 70% (8, 10). In this study, we
demonstrated that podoplanin overexpressed in the IFs of canine
mucosal melanoma was related to reduced PFS and OS rates, indi-
cating that podoplanin overexpressed in the IFs is a key molecule in
canine mucosal melanoma metastasis. We showed that podoplanin
depletion in canine mucosal melanoma cells downregulated the
activation of ERM, RhoA, and ROCK-MLC2. Moreover, podoplanin
depletion and ROCK inhibition suppressed amoeboid invasion fea-
tures in canine mucosal melanoma cells, and restoring podoplanin
expression reactivated ROCK-MLC2 signaling in podoplanin-KO
cells. Podoplanin directly binds to ERM protein to activate RhoA (20),
and ROCK is a major effector molecule of the activated RhoA.
Amoeboid invasion has been reported to be induced by ROCK-MLC2
signaling activation (27-31). Therefore, podoplanin would promote
amoeboid invasion by activating ERM-RhoA-ROCK-MLC2 signal-
ing. During the early step of tumor metastasis, human cutaneous

Figure 6.

Podoplanin promotes amoeboid invasion features in xenografted mouse models and clinical cases. A, Tumor growth curves xenografted in immunodeficient mice
(n=5-7). Graphs show the mean + SEM. Dunnett test. B-D, Representative images of the TBs and IFs of control and podoplanin-KO tumors (top) and quantification
(bottom) of the percentage of ki-67-positive cells (B), melanoma cell shape score (C), and p-MLC2 IHC score (D) of xenografted tissues from A (n = 5-6). Ki-67 and
p-MLC2 were stained with DAB. Scale bar: 200 um. Dunnett test. E and F, Representative images of canine mucosal melanoma tissues showing podoplanin
expression, H&E staining, and p-MLC2 expression in the TBs and IFs (left) and quantification (right) of melanoma cell shape score (E) and p-MLC2 IHC score (F) in the
TBs and IFs of canine mucosal melanoma clinical samples from Fig. 1(n = 40 and 34, respectively). High or low podoplanin expression samples were divided by the
median podoplanin expression score in the IFs. Podoplanin and p-MLC2 were stained with alkaline phosphatase, and podoplanin- and pMLC2-positive cells were
stained red. Scale bar, 100 um. One-way ANOVA with Tukey-Kramer test: *, P < 0.05; **, P < 0.01. C, Control, #1: PDPN-KO cell line 1, #2: PDPN-KO cell line 2.
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melanoma cells change their cellular morphology into the aggressive
amoeboid mode by activating ROCK-MLC2 signaling to invade
adjacent tissues (27-31). Amoeboid invasion is a faster, more efficient,
and less energy-consuming mode than the mesenchymal mode,
potentiating the ability of cancer cells to migrate and invade the
extracellular environment (49). In the late stage of metastasis, amoe-
boid invading human cutaneous melanoma cells promote distant
colonization by disrupting endothelial junctions and increasing endo-
thelial cell permeability via secretion of IL1ot and activation of NF-xB,
promoting extravasation and metastasis colonization (27). In this
study, we obtained similar results that abrogation of podoplanin-
ROCK-MLC2 signaling in canine mucosal melanoma cells suppressed
amoeboid invasion features in the IFs of primary tumor tissues and
tumor colonization in distant organs. Overall, podoplanin expressed in
the IFs of canine mucosal melanoma cells would be a major promoter
of the series of their metastatic process.

Amoeboid-invading human cutaneous melanoma cells have a high
proliferative capacity (29). In our study, podoplanin deletion and
ROCK-MLC?2 signaling inhibitions suppressed cell proliferation, sug-
gesting that podoplanin promoted the proliferation of amoeboid
invading cells. In podoplanin-KO cells, S-phase cell-cycle entry was
inhibited, and a high expression of CDKi mRNA was observed. Tumor
cells often downregulate CDKi expression to promote rapid cell
proliferation because CDKi negatively regulates cell-cycle progres-
sion (50, 51). RhoA activation in tumor cells was reported as a possible
mechanism of CDKi suppression. A previous report showed that
RhoA suppression in human gastric cancer cells induced p21 and
p27 upregulation and decreased the number of cells in S-phase cell-
cycle (52). Therefore, our findings suggest that podoplanin would
promote S-phase cell-cycle entry in canine mucosal melanoma cells by
suppressing CDKi expression probably through RhoA activation and
that podoplanin promotes the proliferation of amoeboid invading cells
in the canine mucosal melanoma IFs.

Furthermore, we found that podoplanin depletion and inhibition of
ROCK-MLC?2 induced cellular senescence and cytokinesis failure in
canine mucosal melanoma cells. Cellular senescence is a state of
permanent cell-cycle arrest that occurs in response to stress; therefore,
cellular senescence could be a barrier that tumor cells need to evade to
maintain an aberrant proliferation (53, 54). Cytokinesis failure has
been reported to induce cellular senescence in human colon cancer
cells and rat embryo fibroblasts (55, 56). In addition, it was reported
that RhoA and MLC2 inhibition led to cytokinesis failure in murine
embryo fibroblasts; hence, RhoA-ROCK-MLC2 signaling activation is
involved in cytokinesis progression (57, 58). Overall, cytokinesis
failure caused by podoplanin depletion would induce cellular senes-
cence in canine mucosal melanoma cells. Although it was reported that
cytokinesis failure induced cellular senescence, the detailed mecha-
nism has yet to be comprehensively described. Cytokinesis failure was
reported to generate lagging chromosomes and micronuclei leading to
DNA damage response that induces cellular senescence (59). A
previous report showed that inhibition of ROCK induced DNA
damage in human melanoma cells (60). Other report suggested that
cytokinesis failure in RPE-1 cells prevented cell proliferation by
activating the large tumor suppressor kinase 2 (LATS2), which inac-
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tivated YAP and stabilized p53 (61). Overall, our findings suggest that
podoplanin-RhoA-ROCK-MLC2 signaling in amoeboid invading
canine mucosal melanoma cells supports the escape from cellular
senescence by preventing cytokinesis failure, caused by high prolifer-
ative activity, and further research is required to reveal the detailed
mechanism.

A previous study indicated that PDPN senses a stiffness of external
environment and regulates fibroblast proliferation (42). We found that
the proliferation of control cells increased on the noncollagen dish
compared to the collagen thick-layer dish, and the changes depended
on the PDPN expression in canine mucosal melanoma cells. As tumor
stiffness increased from the tumor core region to the tumor periph-
ery (62), podoplanin might have sensed a stiffer microenvironment of
canine mucosal melanoma IFs and promoted the proliferation of
amoeboid-invading cells in the IFs.

Human mucosal melanoma is a rare and the most aggressive
subtype, and it is difficult for surgery to achieve radical excision,
owing to the lentiginous growth pattern, multifocal nature, and high
metastasis rate of approximately 80% (1). Although adjuvant radio-
therapy is performed for the local control of human mucosal
melanoma, it could not reduce the risk of distant metastasis and
prolong patients’ survival (63, 64). In addition, patients with
mucosal melanoma show lower response rates to immune check-
point blockades than those with cutaneous melanoma (23 vs. 40.9%;
ref. 65). Therefore, it is crucial to understand the molecular
mechanism of human mucosal melanoma metastasis. Our study
revealed that high podoplanin expression in human mucosal mel-
anoma is associated with poor prognosis and the enrichment of
amoeboid invasion-related gene signatures, as observed in canine
mucosal melanoma. Furthermore, we found that the upregulation
pattern of mesenchymal amoeboid transition-related genes was
similar between podoplanin high-expressing human and canine
mucosal melanoma tissues. These findings suggest that podoplanin
drives amoeboid invasion and metastasis in human mucosal mel-
anoma through similar mechanisms as those acting in canine
mucosal melanoma. Thus, naturally occurring canine mucosal
melanoma could be a novel research model for podoplanin expres-
sing human mucosal melanoma.

We showed that podoplanin was overexpressed in the IFs of canine
mucosal melanoma tissues; however, the induction mechanism of
podoplanin remains unclear. A previous study showed that podopla-
nin expression is induced by inflammatory cytokines such as IFNy,
TGFp, and/or tumor necrosis factor-ot in human SCC cells (66).
Tumor IFs are located adjacent tumor stromal regions enriched with
inflammatory immune cells; thus, tumor cells in the TFs could be
strongly exposed to inflammatory cytokines released from inflamma-
tory immune cells in stromal regions (67). Therefore, inflammatory
cytokine may induce podoplanin expression on canine melanoma cells
in the TIF, leading to aggressive amoeboid invasion.

Our study opens the possibility that podoplanin plays a crucial role
in amoeboid invasion and metastasis of canine and human mucosal
melanoma. podoplanin could be used as a biomarker and a therapeutic
target for the restriction of amoeboid invasion and metastatic dissem-
ination in canine and human mucosal melanoma.

Figure 7.

Human mucosal melanomas with podoplanin high expression demonstrates enrichment of gene signatures associated with amoeboid invasion. A, Kaplan-Meier
survival curves for PFS and OS of human patients with stages 3 or 4 mucosal melanoma above or below the median podoplanin gene expression from The Cancer
Genome Atlas (TCGA) dataset (n =11). Log-rank test. B, Enriched GO terms in high podoplanin-expressing human mucosal melanoma tissues. The x-axis indicates the
—logp Pvalue. Cand D, GSEA plots showing enriched gene signatures in high podoplanin expressing human mucosal melanoma tissues. NES: normalized enrichment
score. E, Heat maps demonstrating the relative expression of mesenchymal amoeboid transition-related genes in human and canine mucosal melanoma tissues. The
color key indicates the fold change (FC) in gene expression from the average expression.
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